
3D Volume Renderization and Connected Component
Filtering through Maxtree

André Luı́s Costa and Wu Shin Ting and Roberto de Alencar Lotufo
and Letı́cia Rittner

Department of Computer Engineering and Industrial
Automation, School of Electrical and Computer

Engineering, University of Campinas, Brazil
alcosta@dca.fee.unicamp.br

December 6, 2013

Abstract

This paper reports the results of a project
for 3D MRI data volume visualization using
the ray–casting technique implemented in the
GPU. The project includes the filtering of con-
nected components organized in a tree struc-
ture known as Maxtree. The project was devel-
oped over the course IA369E given during the
second half of 2013 in the School of Electri-
cal and Computer Engineering, University of
Campinas. The produced prototype allow the
user to interact with the visualization, to spec-
ify custom transfer functions and to filter the
data volume. Such functionalities combined
give the user the power to enhance and high-
light features of interest in the volume being vi-
sualized. From learning perspective the results
were more than satisfactory, given the knowl-
edge obtained by the student, who is now able
to improve and extend the application that can
be used in future researches related to the hu-
man brain.

1 Introduction

Recent technological advances have made it
possible to obtain increasingly large data vol-
umes that may be synthetic from computer
simulations, but may also be derived from
scans of physical bodies using, for instance,
Magnetic Ressonance Imaging (MRI) and
Computer Tomography (CT) [1, 2]. There-
fore, the visualization of data volumes become
one critical task, along with statistical analysis
tools, to help scientists understand and gain in-
sight from their data. More over, the interactive
visualization is needful to give scientists the
ability to map characteristics, select portions,
and make the repositioning of the volume, aim-
ing to highlight the desired information.

In this work our goal was to visualize MRI
volumes from the human brain with possibility
of interaction. Especifically, we employ filters
using a maxtree [3] structure to help the selec-
tion of desired portions of the volume for vi-
sualization. Our application also provide tools
for mapping the volume intensity values to cus-
tom colors and opacity through transfer func-
tions.

1



Besides the application goals, and once the
project was developed over a course, one goal
was also learning. The knowledge of 3D vol-
ume renderization techniques and visualization
tools is a valuable resource for scientists that
works with large data volumes. By having
this knowledge the scientist is not only able
to explore the data volumes, like using already
available visualization tools, but also to incor-
porate custom functionalities to the application
that could be used for specific research pur-
poses.

This paper is organized as follow: Section 2
describes the main tools and methods involved
in the project, with some relevant design and
implementation details; Section 3 presents the
main user interface and relates some usage ex-
periences; in Section 4 a conclusion is pre-
sented, along with a perspective for future re-
lated works.

2 Tools and methods

The core tools and methods employed in the
project are described in this Section. We fo-
cus on the techniques chosen and how they
interact to give us some desired functionali-
ties like filtering, color mapping and translu-
cency. The whole project was designed to work
with OpenGL [4] as the Application Program-
ming Interface (API) to communicate with
the Graphics Processing Unit (GPU). Further-
more, we use the OpenGL Shading Language
(GLSL) to implement parts of the application
that need to run on the GPU.

The application uses the Qt [5] framework to
manage the graphical user interface. The main
programming language used was Python, with
some parts implemented in C/C++.

2.1 Ray–casting

The technique chosen to make the volume vi-
sualization, i. e., map a 3D volume to a 2D
plane, is known in the literature as ray–casting
[1, 6]. In this approach the color of every pixel
of the 2D image is a composition of the values
along a ray that traverse the data volume, per-
pendicular to the view plane. The ray–casting
technique was chosen due to its highly paral-
lelization on the GPU, leaving the CPU avail-
able for other operations. Also, it is natural
to implement different light interactions with
the data [1] once the ray may be considered a
ray of light. In our work we implement only
the light emission interaction that is simple and
sufficient for our purposes.

Its worth to note that there are a variety of
techniques to render a 3D volume into a 2D
plane. Some of them make an indirect render-
ization by converting the data content into el-
ements of geometry. These methods were dis-
carded due to the nature of the data we wish to
display. Thus, the ray–casting technique was
chosen from a set of direct volume renderiza-
tion methods that include legacy approaches
commonly used when the display technology
was not yet well developed. One interesting
related work published by Westenberg et al.[7]
also uses the maxtree structure to provide com-
ponent filtering, however they render the vol-
ume using a technique known as splatting. The
reason we chose ray–casting instead of splat-
ting is that we wanted to solve the render-
ization problem as much as we could in the
GPU. Given that the target data volumes hardly
would not fit in the GPU texture memory, a
simple ray–casting implementation could do
the job. Yet, it still a powerful tool.

The ray–casting implementation is de-
picted in Fig. 1. As we can see, the main appli-
cation runs on the CPU and is written mostly
using the Python programming language to-

2



gether with a number of libraries that includes
Qt and OpenGL. The data volume is loaded
from disk with the help of the Nibabel [8] li-
brary and preprocessed with Numpy [9] to cor-
rect orientation and shape. This process is
made only once, after which the resulting data
volume is transferred to the GPU texture mem-
ory. Then, at each user interaction the render-
ing variables are updated. That includes the
vertices for the volume container and the ray
direction in the texture space coordinates rela-
tive to the camera view point.

Figure 1: Diagram showing the main appli-
cation components and how they interact to
implement the ray–casting renderization tech-
nique.

The vertex shader is slightly adaptated to
transfer to the fragment shader the correspond-
ing texture coordinates at the face point being
drawn by each fragment (pixel). The fragment
shader is the core implementation of the ray–
casting technique. Then, for each fragment the
following steps are computed

1. Find the intersections of the ray with the
edges of the texture space;

2. From the last intersection to the first, in
regards to the camera view point, the vol-
ume colors in a set of consecutive equally
spaced points along the ray are composed
into the final fragment color.

The codes for the vertex and fragment
shaders are written in GLSL version 1.3. When
the renderization pipeline finishes, it display in

the application canvas the resulting 2D image.
The transfer function is also applyied in the
fragment shader, as described in details in the
following Section 2.2.

2.2 Transfer function

The transfer function is the mechanism used
in volume rendering to transform raw data val-
ues into the optical properties needed to make a
picture [1]. Although the transfer function es-
sentially plays the role of a simple color map,
it is one of the most important stages of the
volume-rendering pipeline as it enable the user
to enhance features of interest in the data and
can also hide unimportant regions, i. e., it acts
like a filter.

Figure 2 show the transfer function editor
which was specifically designed for this work,
using OpenGL. The editor has two main con-
trolers: in the first the user can edit the color
map; and in the second the user can edit the
opacity function. Thus, at each interaction on
the controlers an unidimensional transfer func-
tion with components RGBA is generated with
size 256 (once our raw data values are repre-
sented by 8 bits). The transfer function is then
transferred to the GPU texture memory and the
volume renderization is updated.

The renderization update occur in execution
time feeding the user who can react and suit the
transfer function properly. Editing the opacity
component of the transfer function the user can
simulate a thresholding of the volume leading
to the renderization of an isosurface, and can
also make the volume translucent.

2.3 Component filtering

Component filters works not only with based
on the raw values of each of the data volume
elements, but also based on how they are con-
nected. One efficient way to implement com-
ponent filters is to work with a tree structure

3



Figure 2: Transfer function editor that enable
the user to specify a completely custom color
map.

known as Component Tree (CT), which is an
hierarchy of connected components at distinct
thresholds of an image [10]. Let f be a gray
scale digital image. There exists one possible
threshold

fk =

{
1, if f(x) ≥ k
0, otherwise

, (1)

for each gray level k ∈ {f(x)}, where x ∈ f .
We call fk a section k of f . There is a relation
of inclusion between connected components at
distinct image sections. The component tree is
built based on this observation. Figure 3 show
a gray level 2D image f (Fig. 3(a)) and its 3D
representation (Fig. 3(b)) if we take the gray
level as the pixel altitude. It is observable that
each level k has a number of connected com-
ponents, also called level components, that are
contained on the level components from levels
i < k. Thus, we can build the component tree
ilustrated in Fig. 3(c).

Maxtree is also a tree structure of level com-
ponents like the CT. However, it has a simpler
representation and less nodes. Note that the
level component F from the component tree
represented in Fig. 3(c) is not present in the

(a) f (b) f in 3D

(c) Component Tree (d) Maxtree

Figure 3: Component tree and maxtree repre-
sentations from a gray level 2D image f .

maxtree of the same image f , that is being rep-
resented in Fig. 3(d). Although a maxtree con-
struction is in general easier and faster to build
than a CT, it requires some atention in the im-
plementation of certain component filters.

In our project we use a maxtree represen-
tation of the data volume. The implementa-
tion was made in the programming languages
C/C++ (tree assembling) and Python (repre-
sentation conversion and filtering by volume),
and was inspired on the algorithm proposed by
Salembier [11], which can build the maxtree in
linear time.

The implemented filter disable the maxtree
nodes according with the volume measures for
its associated level components. The max-
tree nodes whose level components has vol-
ume within a range between a minimum and
a maximum values specified by the user are al-
lowed to be rendered. After each application of
the component filtering the data volume is re-

4



constructed and transferred to the GPU texture
memory, updating the visualization.

3 Visualizing

In this Section we present the application user
interface and report some usage experiences.
Figure 4 show the user interface and some
MRI data volume renderizations produced by
the developed application. Notice that there is
a custom color map and opacity function ap-
plyied in the renderization product. One ob-
servable effect is translucency.

The application was designed to run in the
current personal computers. Therefore, when
the user is interacting with the visualization
the number of samples from a ray is reduced.
When the interaction ends, the normal ren-
dering pipeline is restored. Our test system
was a laptop with a processor multicore Intel
Core i3-2330M CPU @ 2.20GHz × 4 cores,
a embedded GPU Intel Sandybridge Mobile
x86/MMX/SSE2 and 3 gigabytes of work-
ing memory. The Operating System was the
Ubuntu 13.04 32 bits. A quite humble ma-
chine for graphical purposes, but still was able
to run the application smoothly with good re-
sponse time for the user to feel the interactivity
with the camera and the transfer function oper-
ations.

The component filtering by volume using
the maxtree took about 2 seconds to rebuild
the data volume and transfer it to the GPU.
Given the application nature and the frequency
by which a component filtering is required, this
time has virtually no impact in the user inter-
activity. Although the maxtree building took
about 30 seconds, this process is made only
once when the data volume is loaded from disk.
These performance information were obtained
by measuring the system time took for each op-
eration for a test data volume with dimensions
120 × 224 × 224, i. e., about 6 million voxels,

that led to a maxtree with about 170,000 nodes.

4 Conclusion

The application developed in the course allow
the user to rotate the volume, specify a custom
transfer function and filter components by vol-
ume. These controls give the user a wide range
of possibilities and can be extended in future
versions. Although the application is still a
prototype with lack of many functionalities, we
consider it a successful result for the course,
specially in regards to the knowledge and ex-
perience obtained.

The prototype application can be used for
further studies and can evolve to a fully func-
tional application that could be used by medi-
cal professionals and scientists to analyse MRI
and CT data volumes. We do expect to improve
the application ability to enhance and highlight
different portions of brain data volumes by im-
plementing other component filters through the
maxtree, and also by using automatic and inter-
active segmentation tools.

References

[1] K. Engel, M. Hadwiger, J. M. Kniss,
C. Rezk-Salama, and D. Weiskopf, Real-
Time Volume Graphics. A K Peters,
2006.

[2] M. Friendly, Handbook of Computational
Statistics: Data Visualization. Springer–
Verlag, 2007, vol. III, ch. A Brief History
of Data Visualization, pp. 1–34.

[3] E. Carlinet and T. Géraud, Mathematical
Morphology and Its Applications to Sig-
nal and Image Processing. Springer,
2013, ch. A comparison of many max-
tree computation algorithms, pp. 73–85.

5



[4] Official Site, “Opengl,” last ac-
cess in dec/2013. [Online]. Available:
http://www.opengl.org/about/

[5] ——, “Qt gui framework,” last access
dec/2013. [Online]. Available: http://qt-
project.org/

[6] T. Akenine–Möller, E. Haines, and
N. Hoffman, Real-Time Rendering,
3rd ed. A K Peters, 2008.

[7] M. A. Westenberg, J. B. T. M. Roerdink,
and M. H. F. Wilkinson, “Volumetric at-
tribute filtering and interactive visualiza-
tion using the max-tree representation,”
IEEE Transactions on Image Processing,
vol. 16, no. 12, pp. 2943–2952, 2007.

[8] Official Site, “Nibabel library,” last
access in dec/2013. [Online]. Available:
http://nipy.org/nibabel/

[9] ——, “Numpy: matricial operations in
python,” last access in dec/2013. [On-
line]. Available: http://www.numpy.org/

[10] V. Mosorov and T. M. Kowalski, “The
development of component tree struc-
ture for grayscale image segmentation,”
in Modern Problems of Radio Engineer-
ing, Telecommunications and Computer
Science, 2002. Proceedings of the Inter-
national Conference, 2002, pp. 252–253.

[11] P. Salembier, A. Oliveras, and L. Gar-
rido, “Antiextensive connected opera-
tors for image and sequence processing,”
IEEE Transactions on Image Processing,
vol. 7, no. 4, pp. 555–570, 1998.

6



(a) Main user interface

(b) Component filtering with custom transfer
function

(c) Internal brain structure being highlighted by component fil-
tering

Figure 4: User interface and renderizations using component filtering and custom transfer func-
tions.

7


