How to read Capacitor Codes

Large capacitor have the value printed plainly on them, such as $10 . \mathrm{uF}$ (Ten Micro Farads) but smaller disk types along with plastic film types often have just 2 or three numbers on them?

First, most will have three numbers, but sometimes there are just two numbers. These are read as Pico-Farads. An example: 47 printed on a small disk can be assumed to be 47 Pico-Farads (or 47 puff as some like to say)

Now, what about the three numbers? It is somewhat similar to the resistor code. The first two are the $1^{\text {st }}$ and $2^{\text {nd }}$ significant digits and the third is a multiplier code. Most of the time the last digit tells you how many zeros to write after the first two digits, but the standard (EIA standard RS-198) has a couple of curves that you probably will never see. But just to be complete here it is in a table.

Third digit	Multiplier (this times the first two digits gives you the value in Pico-Farads)
0	1
1	10
2	100
3	1,000
4	10,000
5	100,000
6 not used	
7 not used	
8	.01
9	.1

Now for an example: A capacitor marked 104 is 10 with 4 more zeros or $100,000 \mathrm{pF}$ which is otherwise referred to as a 1 uF capacitor.

Most kit builders don't need to go further, but I know you want to learn more. Anyway, Just to confuse you some more there is sometimes a tolerance code given by a single letter. I don't know why there were picked in the order they are, except that it kind of follows the middle row of keys on a typewriter.

So a 103J is a $10,000 \mathrm{pF}$ with $+/-5 \%$ tolerance

Letter symbol	Tolerance of capacitor
D	$+/-0.5 \mathrm{pF}$
F	$+/-1 \%$
G	$+/-2 \%$
H	$+/-3 \%$
J	$+/-5 \%$
K	$+/-10 \%$
M	$+/-20 \%$
P	$+100 \%,-0 \%$
Z	$+80 \%,-20 \%$

