

••

User interface design
16

Objectives
The objective of this chapter is to introduce some aspects of user
interface design that are important for software engineers. When
you have read this chapter, you will:

■ understand a number of user interface design principles;

■ have been introduced to several interaction styles and
understand when these are most appropriate;

■ understand when to use graphical and textual presentation of
information;

■ know what is involved in the principal activities in the user
interface design process;

■ understand usability attributes and have been introduced to
different approaches to interface evaluation.

Contents
16.1 Design issues

16.2 The UI design process

16.3 User analysis

16.4 User interface prototyping

16.5 Interface evaluation

SE8_C16.qxd 4/4/06 9:10 Page 362

Chapter 16 ■ User interface design 363

Computer system design encompasses a spectrum of activities from hardware
design to user interface design. While specialists are often employed for hardware
design and for the graphic design of web pages, only large organisations normally
employ specialist interface designers for their application software. Therefore, soft-
ware engineers must often take responsibility for user interface design as well as
for the design of the software to implement that interface.

Even when software designers and programmers are competent users of inter-
face implementation technologies, such as Java’s Swing classes (Elliott et al., 2002)
or XHTML (Musciano and Kennedy, 2002), the user interfaces they develop are
often unattractive and inappropriate for their target users. I focus, therefore, on the
design process for user interfaces rather than the software that implements these
facilities. Because of space limitations, I consider only graphical user interfaces. I
don’t discuss interfaces that require special (perhaps very simple) displays such as
cell phones, DVD players, televisions, copiers and fax machines. Naturally, I can
only introduce the topic here and I recommend texts such as those by Dix et al.
(Dix, et al., 2004), Weiss (Weiss, 2002) and Shneiderman (Shneiderman, 1998) for
more information on user interface design.

Careful user interface design is an essential part of the overall software design
process. If a software system is to achieve its full potential, it is essential that its
user interface should be designed to match the skills, experience and expectations
of its anticipated users. Good user interface design is critical for system depend-
ability. Many so-called ‘user errors’ are caused by the fact that user interfaces do
not consider the capabilities of real users and their working environment. A poorly
designed user interface means that users will probably be unable to access some of
the system features, will make mistakes and will feel that the system hinders rather
than helps them in achieving whatever they are using the system for.

When making user interface design decisions, you should take into account the
physical and mental capabilities of the people who use software. I don’t have space
to discuss human issues in detail here but important factors that you should con-
sider are:

1. People have a limited short-term memory—we can instantaneously remember
about seven items of information (Miller, 1957). Therefore, if you present users
with too much information at the same time, they may not be able to take it
all in.

2. We all make mistakes, especially when we have to handle too much informa-
tion or are under stress. When systems go wrong and issue warning messages
and alarms, this often puts more stress on users, thus increasing the chances
that they will make operational errors.

3. We have a diverse range of physical capabilities. Some people see and hear
better than others, some people are colour-blind, and some are better than oth-
ers at physical manipulation. You should not design for your own capabilities
and assume that all other users will be able to cope.

••

SE8_C16.qxd 4/4/06 9:10 Page 363

364 Chapter 16 ■ User interface design

4. We have different interaction preferences. Some people like to work with pic-
tures, others with text. Direct manipulation is natural for some people, but oth-
ers prefer a style of interaction that is based on issuing commands to the system.

These human factors are the basis for the design principles shown in Figure 16.1.
These general principles are applicable to all user interface designs and should nor-
mally be instantiated as more detailed design guidelines for specific organisations
or types of system. User interface design principles are covered in more detail by
Dix, et al. (Dix, et al., 2004). Shneiderman (Shneiderman, 1998) gives a longer list
of more specific user interface design guidelines.

The principle of user familiarity suggests that users should not be forced to adapt
to an interface because it is convenient to implement. The interface should use terms
that are familiar to the user, and the objects manipulated by the system should be
directly related to the user’s working environment. For example, if a system is designed
for use by air traffic controllers, the objects manipulated should be aircraft, flight
paths, beacons, and so on. Associated operations might be to increase or reduce air-
craft speed, adjust heading and change height. The underlying implementation of
the interface in terms of files and data structures should be hidden from the end-
user.

The principle of user interface consistency means that system commands and
menus should have the same format, parameters should be passed to all commands
in the same way, and command punctuation should be similar. Consistent interfaces
reduce user learning time. Knowledge learned in one command or application is
therefore applicable in other parts of the system or in related applications.

Interface consistency across applications is also important. As far as possible,
commands with similar meanings in different applications should be expressed in

••••

Principle Description

User familiarity The interface should use terms and concepts drawn from the
experience of the people who will make most use of the system.

Consistency The interface should be consistent in that, wherever possible,
comparable operations should be activated in the same way.

Minimal surprise Users should never be surprised by the behaviour of a system.

Recoverability The interface should include mechanisms to allow users to
recover from errors.

User guidance The interface should provide meaningful feedback when errors
occur and provide context-sensitive user help facilities.

User diversity The interface should provide appropriate interaction facilities for
different types of system users.

Figure 16.1 User
interface design
principles

SE8_C16.qxd 4/4/06 9:10 Page 364

Chapter 16 ■ User interface design 365

the same way. Errors are often caused when the same keyboard command, such as
‘Control-b’ means different things in different systems. For example, in the word
processor that I normally use, ‘Control-b’ means embolden text, but in the graph-
ics program that I use to draw diagrams, ‘Control-b’ means move the selected object
behind another object. I make mistakes when using them together and sometimes
try to embolden text in a diagram using the key combination. I then get confused
when the text disappears behind the enclosing object. You can normally avoid this
kind of error if you follow the command key shortcuts defined by the operating
system that you use.

This level of consistency is low-level. Interface designers should always try to
achieve this in a user interface. Consistency at a higher level is also sometimes desir-
able. For example, it may be appropriate to support the same operations (print, copy,
etc.) on all types of system entities. However, Grudin (Grudin, 1989) points out that
complete consistency is neither possible nor desirable. It may be sensible to imple-
ment deletion from a desktop by dragging entities into a trash can. It would be awk-
ward to delete text in a word processor in this way.

Unfortunately, the principles of user familiarity and user consistency are some-
times conflicting. Ideally, applications with common features should always use the
same commands to access these features. However, this can conflict with user prac-
tice when systems are designed to support a particular type of user, such as graphic
designers. These users may have evolved their own styles of interactions, termi-
nology and operating conventions. These may clash with the interaction ‘standards’
that are appropriate to more general applications such as word processors.

The principle of minimal surprise is appropriate because people get very irri-
tated when a system behaves in an unexpected way. As a system is used, users build
a mental model of how the system works. If an action in one context causes a par-
ticular type of change, it is reasonable to expect that the same action in a different
context will cause a comparable change. If something completely different happens,
the user is both surprised and confused. Interface designers should therefore try to
ensure that comparable actions have comparable effects.

Surprises in user interfaces are often the result of the fact that many interfaces
are moded. This means that there are several modes of working (e.g., viewing mode
and editing mode), and the effect of a command is different depending on the mode.
It is very important that, when designing an interface, you include a visual indica-
tor showing the user the current mode.

The principle of recoverability is important because users inevitably make mis-
takes when using a system. The interface design can minimise these mistakes (e.g.,
using menus means avoids typing mistakes), but mistakes can never be completely
eliminated. Consequently, you should include interface facilities that allow users to
recover from their mistakes. These can be of three kinds:

1. Confirmation of destructive actions If a user specifies an action that is poten-
tially destructive, the system should ask the user to confirm that this is really
what is wanted before destroying any information.

••••

SE8_C16.qxd 4/4/06 9:10 Page 365

366 Chapter 16 ■ User interface design

2. The provision of an undo facility Undo restores the system to a state before the
action occurred. Multiple levels of undo are useful because users don’t always
recognise immediately that a mistake has been made.

3. Checkpointing Checkpointing involves saving the state of a system at periodic inter-
vals and allowing the system to restart from the last checkpoint. Then, when mis-
takes occur, users can go back to a previous state and start again. Many systems
now include checkpointing to cope with system failures but, paradoxically, they
don’t allow system users to use them to recover from their own mistakes.

A related principle is the principle of user assistance. Interfaces should have built-
in user assistance or help facilities. These should be integrated with the system and
should provide different levels of help and advice. Levels should range from basic
information on getting started to a full description of system facilities. Help sys-
tems should be structured so that users are not overwhelmed with information when
they ask for help.

The principle of user diversity recognises that, for many interactive systems, there
may be different types of users. Some will be casual users who interact occasion-
ally with the system while others may be power users who use the system for sev-
eral hours each day. Casual users need interfaces that provide guidance, but power
users require shortcuts so that they can interact as quickly as possible. Furthermore,
users may suffer from disabilities of various types and, if possible, the interface
should be adaptable to cope with these. Therefore, you might include facilities to
display enlarged text, to replace sound with text, to produce very large buttons and
so on. This reflects the notion of Universal Design (UD) (Preiser and Ostoff, 2001),
a design philosophy whose goal is to avoid excluding users because of thoughtless
design choices.

The principle of recognising user diversity can conflict with the other interface
design principles, since some users may prefer very rapid interaction over, for exam-
ple, user interface consistency. Similarly, the level of user guidance required can
be radically different for different users, and it may be impossible to develop sup-
port that is suitable for all types of users. You therefore have to make compromises
to reconcile the needs of these users.

16.1 Design issues

Before going on to discuss the process of user interface design, I discuss some gen-
eral design issues that have to be considered by UI designers. Essentially, the designer
of a user interface to a computer is faced with two key questions:

1. How should the user interact with the computer system?

••••

SE8_C16.qxd 4/4/06 9:10 Page 366

16.1 ■ Design issues 367

2. How should information from the computer system be presented to the user?

A coherent user interface must integrate user interaction and information presen-
tation. This can be difficult because the designer has to find a compromise between
the most appropriate styles of interaction and presentation for the application, the back-
ground and experience of the system users, and the equipment that is available.

16.1.1 User interaction

User interaction means issuing commands and associated data to the computer sys-
tem. On early computers, the only way to do this was through a command-line inter-
face, and a special-purpose language was used to communicate with the machine.
However, this was geared to expert users and a number of approaches have now
evolved that are easier to use. Shneiderman (Shneiderman, 1998) has classified these
forms of interaction into five primary styles:

1. Direct manipulation The user interacts directly with objects on the screen. Direct
manipulation usually involves a pointing device (a mouse, a stylus, a trackball
or, on touch screens, a finger) that indicates the object to be manipulated and
the action, which specifies what should be done with that object. For example,
to delete a file, you may click on an icon representing that file and drag it to
a trash can icon.

2. Menu selection The user selects a command from a list of possibilities (a menu).
The user may also select another screen object by direct manipulation, and the
command operates on that object. In this approach, to delete a file, you would
select the file icon then select the delete command.

3. Form fill-in The user fills in the fields of a form. Some fields may have asso-
ciated menus, and the form may have action ‘buttons’ that, when pressed, cause
some action to be initiated. You would not normally use this approach to imple-
ment the interface to operations such as file deletion. Doing so would involve
filling in the name of the file on the form then ‘pressing’ a delete button.

4. Command language The user issues a special command and associated param-
eters to instruct the system what to do. To delete a file, you would type a delete
command with the filename as a parameter.

5. Natural language The user issues a command in natural language. This is usu-
ally a front end to a command language; the natural language is parsed and
translated to system commands. To delete a file, you might type ‘delete the file
named xxx’.

Each of these styles of interaction has advantages and disadvantages and is best
suited to a particular type of application and user (Shneiderman, 1998). Figure 16.2

••••

SE8_C16.qxd 4/4/06 9:10 Page 367

368 Chapter 16 ■ User interface design

shows the main advantages and disadvantages of these styles and suggests types of
applications where they might be used.

Of course, these interaction styles may be mixed, with several styles used in the
same application. For example, Microsoft Windows supports direct manipulation
of the iconic representation of files and directories, menu-based command selec-
tion, and for commands such as configuration commands, the user must fill in a
special-purpose form that is presented to them.

In principle, it should be possible to separate the interaction style from the under-
lying entities that are manipulated through the user interface. This was the basis of
the Seeheim model (Pfaff and ten Hagen, 1985) of user interface management. In
this model, the presentation of information, the dialogue management and the
application are separate. In reality, this model is more of an ideal than practical,
but it is certainly possible to have separate interfaces for different classes of users
(casual users and experienced users, say) that interact with the same underlying sys-
tem. This is illustrated in Figure 16.3, which shows a command language interface
and a graphical interface to an underlying operating system such as Linux.

Web-based user interfaces are based on the support provided by HTML or XHTML
(the page description languages used for web pages) along with languages such as

••••

Interaction Main Main Application
style advantages disadvantages examples

Direct Fast and intuitive May be hard to Video games
manipulation interaction implement CAD systems

Easy to learn Only suitable where
there is a visual
metaphor for tasks
and objects

Menu selection Avoids user error Slow for experienced Most general-
Little typing users purpose systems
required Can become complex

if many menu options

Form fill-in Simple data entry Takes up a lot of screen Stock control
Easy to learn space Personal loan
Checkable Causes problems where processing

user options do not
match the form fields

Command Powerful and Hard to learn Operating systems
language flexible Poor error management Command and

control systems

Natural Accessible to Requires more typing Information
language casual users Natural language retrieval systems

Easily extended understanding systems
are unreliable

Figure 16.2
Advantages and
disadvantages of
interaction styles

SE8_C16.qxd 4/4/06 9:10 Page 368

16.1 ■ Design issues 369

Java, which can associate programs with components on a page. Because these web-
based interfaces are usually designed for casual users, they mostly use forms-based
interfaces. It is possible to construct direct manipulation interfaces on the web, but
this is a complex programming task. Furthermore, because of the range of experi-
ence of web users and the fact that they come from many different cultures, it is
difficult to establish a user interface metaphor for direct interaction that is univer-
sally acceptable.

To illustrate the design of web-based user interaction, I discuss the approach used
in the LIBSYS system where users can access documents from other libraries. There
are two fundamental operations that need to be supported:

1. Document search where users use the search facilities to find the documents
that they need

2. Document request where users request that the document be delivered to their
local machine or server for printing

The LIBSYS user interface is implemented using a web browser, so, given that
users must supply information to the system such as the document identifier, their
name and their authorisation details, it makes sense to use a forms-based interface.
Figure 16.4 shows a possible interface design for the search component of the system.

In forms-based interfaces, the user supplies all of the information required then
initiates the action by pressing a button. Forms fields can be menus, free-text input
fields or radio buttons. In the LIBSYS example, a user chooses the collection to
search from a menu of collections that can be accessed (‘All’ is the default, mean-
ing search all collections) and types the search phrase into a free-text input field.
The user chooses the field of the library record from a menu (‘Title’ is the default)
and selects a radio button to indicate whether the search terms should be adjacent
in the record.

••••

Linux operating system

X-windows GUI
manager

Graphical user
interface

(Gnome/KDE)

Command
language

interpreter

Unix shell
interface
(ksh/csh)

Figure 16.3 Multiple
user interfaces

SE8_C16.qxd 4/4/06 9:10 Page 369

370 Chapter 16 ■ User interface design

16.1.2 Information presentation

All interactive systems have to provide some way of presenting information to users.
The information presentation may simply be a direct representation of the input
information (e.g., text in a word processor) or it may present the information graph-
ically. A good design guideline is to keep the software required for information
presentation separate from the information itself. Separating the presentation sys-
tem from the data allows us to change the representation on the user’s screen with-
out having to change the underlying computational system. This is illustrated in
Figure 16.5.

The MVC approach (Figure 16.6), first made widely available in Smalltalk
(Goldberg and Robson, 1983), is an effective way to support multiple presentations
of data. Users can interact with each presentation in a style that is appropriate to
the presentation. The data to be displayed is encapsulated in a model object. Each
model object may have a number of separate view objects associated with it where
each view is a different display representation of the model.

Each view has an associated controller object that handles user input and device
interaction. Therefore, a model that represents numeric data may have a view that
represents the data as a histogram and a view that presents the data as a table. The
model may be edited by changing the values in the table or by lengthening or short-
ening the bars in the histogram. I discuss this in more detail in Chapter 18, where
I explain how you can use the Observer pattern to implement the MVC framework.

To find the best presentation of information, you need to know the users’ back-
ground and how they use the system. When you are deciding how to present infor-
mation, you should bear the following questions in mind:

1. Is the user interested in precise information or in the relationships between data
values?

2. How quickly do the information values change? Should the change in a value
be indicated immediately to the user?

••••

Figure 16.4 A forms-
based interface to
the LIBSYS system

SE8_C16.qxd 4/4/06 9:10 Page 370

16.1 ■ Design issues 371

3. Must the user take some action in response to a change in information?

4. Does the user need to interact with the displayed information via a direct manip-
ulation interface?

5. Is the information to be displayed textual or numeric? Are relative values of
information items important?

You should not assume that using graphics makes your display more interesting.
Graphics take up valuable screen space (a major issue with portable devices) and can
take a long time to download if the user is working over a slow, dial-up connection.

Information that does not change during a session may be presented either graph-
ically or as text depending on the application. Textual presentation takes up less
screen space but cannot be read at a glance. You should distinguish information
that does not change from dynamic information by using a different presentation
style. For example, you could present all static information in a particular font or
colour, or you could associate a ‘static information’ icon with it.

You should use text to present information when precise information is required
and the information changes relatively slowly. If the data changes quickly or if the

••••

Information to
be displayed

Presentation
software

Display

Figure 16.5
Information
presentation

Controller state View modification
messages

User
inputs

Model
edits

Model queries
and updates

Controller methods

Model state

Model methods

Controller state

Controller methods

Figure 16.6
The MVC model of
user interaction

SE8_C16.qxd 4/4/06 9:10 Page 371

372 Chapter 16 ■ User interface design

relationships between data rather than the precise data values are significant, then
you should present the information graphically.

For example, consider a system that records and summarises the sales figures
for a company on a monthly basis. Figure 16.7 illustrates how the same informa-
tion can be presented as text or in a graphical form. Managers studying sales fig-
ures are usually more interested in trends or anomalous figures rather than precise
values. Graphical presentation of this information, as a histogram, makes the
anomalous figures in March and May stand out from the others. Figure 16.7 also
illustrates how textual presentation takes less space than a graphical representation
of the same information.

In control rooms or instrument panels such as those on a car dashboard, the infor-
mation that is to be presented represents the state of some other system (e.g., the
altitude of an aircraft) and is changing all the time. A constantly changing digital
display can be confusing and irritating as readers can’t read and assimilate the infor-
mation before it changes. Such dynamically varying numeric information is there-
fore best presented graphically using an analogue representation. The graphical display
can be supplemented if necessary with a precise digital display. Different ways of
presenting dynamic numeric information are shown in Figure 16.8.

Continuous analogue displays give the viewer some sense of relative value. In
Figure 16.9, the values of temperature and pressure are approximately the same.
However, the graphical display shows that temperature is close to its maximum value
whereas pressure has not reached 25% of its maximum. With only a digital value,
the viewer must know the maximum values and mentally compute the relative state
of the reading. The extra thinking time required can lead to human errors in stress-
ful situations when problems occur and operator displays may be showing abnor-
mal readings.

••••

0

1000

2000

3000

4000

Jan Feb Mar April May June

Jan
2842

Feb
2851

Mar
3164

April
2789

May
1273

June
2835

Figure 16.7
Alternative
information
presentations

SE8_C16.qxd 4/4/06 9:10 Page 372

16.1 ■ Design issues 373

When large amounts of information have to be presented, abstract visualisations
that link related data items may be used. This can expose relationships that are not
obvious from the raw data. You should be aware of the possibilities of visualisa-
tion, especially when the system user interface must represent physical entities.
Examples of data visualisations are:

1. Weather information, gathered from a number of sources, is shown as a
weather map with isobars, weather fronts, and so on.

2. The state of a telephone network is displayed graphically as a linked set of nodes
in a network management centre.

3. The state of a chemical plant is visualised by showing pressures and tempera-
tures in a linked set of tanks and pipes.

4. A model of a molecule is displayed and manipulated in three dimensions using
a virtual reality system.

5. A set of web pages is displayed as a hyperbolic tree (Lamping et al., 1995).

Shneiderman (Shneiderman, 1998) offers a good overview of approaches to visu-
alisation as well as identifies classes of visualisation that may be used. These include
visualising data using two- and three-dimensional presentations and as trees or net-
works. Most of these are concerned with the display of large amounts of informa-
tion managed on a computer. However, the most common use of visualisation in
user interfaces is to represent some physical structure such as the molecular struc-
ture of a new drug, the links in a telecommunications network and so on. Three-

••••

1

3

4 2
0 10 20

Dial with needle Pie chart Thermometer Horizontal bar

Figure 16.8 Methods
of presenting
dynamically varying
numeric information

0 100 200 300 400 0 25 50 75 100

Pressure Temperature
Figure 16.9 Graphical
information display
showing relative
values

SE8_C16.qxd 4/4/06 9:10 Page 373

374 Chapter 16 ■ User interface design

dimensional presentations that may use special virtual reality equipment are par-
ticularly effective in product visualisations. Direct manipulation of these visualisa-
tions is a very effective way to interact with the data.

In addition to the style of information presentation, you should think carefully
about how colour is used in the interface. Colour can improve user interfaces by
helping users understand and manage complexity. However, it is easy to misuse
colour and to create user interfaces that are visually unattractive and error-prone.
Shneiderman gives 14 key guidelines for the effective use of colour in user inter-
faces. The most important of these are:

1. Limit the number of colours employed and be conservative how these are used
You should not use more than four or five separate colours in a window and
no more than seven in a system interface. If you use too many, or if they are
too bright, the display may be confusing. Some users may find masses of colour
disturbing and visually tiring. User confusion is also possible if colours are used
inconsistently.

2. Use colour change to show a change in system status If a display changes colour,
this should mean that a significant event has occurred. Thus, in a fuel gauge,
you could use a change of colour to indicate that fuel is running low. Colour
highlighting is particularly important in complex displays where hundreds of
distinct entities may be displayed.

3. Use colour coding to support the task users are trying to perform If they have
to identify anomalous instances, highlight these instances; if similarities are also
to be discovered, highlight these using a different colour.

4. Use colour coding in a thoughtful and consistent way If one part of a system
displays error messages in red (say), all other parts should do likewise. Red
should not be used for anything else. If it is, the user may interpret the red dis-
play as an error message.

5. Be careful about colour pairings Because of the physiology of the eye, people
cannot focus on red and blue simultaneously. Eyestrain is a likely consequence
of a red on blue display. Other colour combinations may also be visually dis-
turbing or difficult to read.

In general, you should use colour for highlighting, but you should not associate
meanings with particular colours. About 10% of men are colour-blind and may mis-
interpret the meaning. Human colour perceptions are different, and there are dif-
ferent conventions in different professions about the meaning of particular colours.
Users with different backgrounds may unconsciously interpret the same colour in
different ways. For example, to a driver, red usually means danger. However, to a
chemist, red means hot.

As well as presenting application information, systems also communicate with
users through messages that give information about errors and the system state. A
user’s first experience of a software system may be when the system presents an

••••

SE8_C16.qxd 4/4/06 9:10 Page 374

16.1 ■ Design issues 375

error message. Inexperienced users may start work, make an initial error and imme-
diately have to understand the resulting error message. This can be difficult enough
for skilled software engineers. It is often impossible for inexperienced or casual sys-
tem users. Factors that you should take into account when designing system mes-
sages are shown in Figure 16.10.

You should anticipate the background and experience of users when designing
error messages. For example, say a system user is a nurse in an intensive-care ward
in a hospital. Patient monitoring is carried out by a computer system. To view a
patient’s current state (heart rate, temperature, etc.), the nurse selects ‘display’ from
a menu and inputs the patient’s name in the box, as shown in Figure 16.11.

In this case, let’s assume that the nurse has misspelled the patient’s name and
has typed ‘MacDonald’ instead of ‘McDonald’. The system generates an error mes-
sage. Error messages should always be polite, concise, consistent and constructive.
They must not be abusive and should not have associated beeps or other noises that
might embarrass the user. Wherever possible, the message should suggest how the
error might be corrected. The error message should be linked to a context-sensitive
online help system.

Figure 16.12 shows examples of good and bad error messages. The left-hand mes-
sage is badly designed. It is negative (it accuses the user of making an error), it is
not tailored to the user’s skill and experience level, and it does not take context

••••

Factor Description

Context Wherever possible, the messages generated by the system should
reflect the current user context. As far as is possible, the system
should be aware of what the user is doing and should generate
messages that are relevant to their current activity.

Experience As users become familiar with a system they become irritated by
long, ‘meaningful’ messages. However, beginners find it difficult
to understand short, terse statements of a problem. You should
provide both types of message and allow the user to control
message conciseness.

Skill level Messages should be tailored to the users’ skills as well as their
experience. Messages for the different classes of users may be
expressed in different ways depending on the terminology that is
familiar to the reader.

Style Messages should be positive rather than negative. They should
use the active rather than the passive mode of address. They
should never be insulting or try to be funny.

Culture Wherever possible, the designer of messages should be familiar
with the culture of the country where the system is sold. There
are distinct cultural differences between Europe, Asia and
America. A suitable message for one culture might be
unacceptable in another.

Figure 16.10 Design
factors in message
wording

SE8_C16.qxd 4/4/06 9:10 Page 375

376 Chapter 16 ■ User interface design

information into account. It does not suggest how the situation might be rectified.
It uses system-specific terms (patient id) rather than user-oriented language. The
right-hand message is better. It is positive, implying that the problem is a system
rather than a user problem. It identifies the problem in the nurse’s terms and offers
an easy way to correct the mistake by pressing a single button. The help system is
available if required.

16.2 The UI design process

User interface (UI) design is an iterative process where users interact with designers
and interface prototypes to decide on the features, organisation and the look and feel
of the system user interface. Sometimes, the interface is separately prototyped in par-
allel with other software engineering activities. More commonly, especially where iter-
ative development is used, the user interface design proceeds incrementally as the software
is developed. In both cases, however, before you start programming, you should have
developed and, ideally, tested some paper-based designs.

The overall UI design process is illustrated in Figure 16.13. There are three core
activities in this process:

••••

Please type the patient name in the box then click on OK

MacDonald, R.

OK Cancel

Patient name

Figure 16.11 An
input text box used
by a nurse

OK Cancel Help RetryPatients Cancel

Error #27

Invalid patient id?
System-oriented error message User-oriented error message

Click on Patients for a list of patients
Click on Retry to re-input the patient's name
Click on Help for more information

R. MacDonald is not a registered patient

Figure 16.12 System
and user-oriented
error messages

SE8_C16.qxd 4/4/06 9:10 Page 376

16.2 ■ The UI design process 377

1. User analysis In the user analysis process, you develop an understanding of
the tasks that users do, their working environment, the other systems that they
use, how they interact with other people in their work and so on. For products
with a diverse range of users, you have to try to develop this understanding
through focus groups, trials with potential users and similar exercises.

2. System prototyping User interface design and development is an iterative pro-
cess. Although users may talk about the facilities they need from an interface,
it is very difficult for them to be specific until they see something tangible.
Therefore, you have to develop prototype systems and expose them to users,
who can then guide the evolution of the interface.

3. Interface evaluation Although you will obviously have discussions with users
during the prototyping process, you should also have a more formalised eval-
uation activity where you collect information about the users’ actual experi-
ence with the interface.

I focus on user analysis and interface evaluation in this section with only a brief
discussion of specific user interface prototyping techniques. I cover more general
issues in prototyping and prototyping techniques in Chapter 17.

The scheduling of UI design within the software process depends, to some extent,
on other activities. As I discuss in Chapter 7, prototyping may be used as part of
the requirements engineering process and, in this case, it makes sense to start the
UI design process at that stage. In iterative processes, discussed in Chapter 17, UI
design is integrated with the software development. Like the software itself, the UI
may have to be refactored and redesigned during development.

••••

Figure 16.13 The UI
design process

SE8_C16.qxd 4/4/06 9:10 Page 377

378 Chapter 16 ■ User interface design

16.3 User analysis

A critical UI design activity is the analyses of the user activities that are to be sup-
ported by the computer system. If you don’t understand what users want to do with
a system, then you have no realistic prospect of designing an effective user inter-
face. To develop this understanding, you may use techniques such as task analysis,
ethnographic studies, user interviews and observations or, commonly, a mixture of
all of these.

A challenge for engineers involved in user analysis is to find a way to describe
user analyses so that they communicate the essence of the tasks to other designers
and to the users themselves. Notations such as UML sequence charts may be able
to describe user interactions and are ideal for communicating with software engi-
neers. However, other users may think of these charts as too technical and will not
try to understand them. Because it is very important to engage users in the design
process, you therefore usually have to develop natural language scenarios to
describe user activities.

Figure 16.14 is an example of a natural language scenario that might have been
developed during the specification and design process for the LIBSYS system. It
describes a situation where LIBSYS does not exist and where a student needs to
retrieve information from another library. From this scenario, the designer can see
a number of requirements:

1. Users might not be aware of appropriate search terms. They may need to access
ways of helping them choose search terms.

2. Users have to be able to select collections to search.

3. Users need to be able to carry out searches and request copies of relevant material.

You should not expect user analysis to generate very specific user interface require-
ments. Normally, the analysis helps you understand the needs and concerns of the

••••

Jane is a religious studies student writing an essay on Indian architecture
and how it has been influenced by religious practices. To help her
understand this, she would like to access pictures of details on notable
buildings but can’t find anything in her local library. She approaches the
subject librarian to discuss her needs and he suggests search terms that
she might use. He also suggests libraries in New Delhi and London that
might have this material, so he and Jane log on to the library catalogues
and search using these terms. They find some source material and place a
request for photocopies of the pictures with architectural details, to be
posted directly to Jane.

Figure 16.14 A library
interaction scenario

SE8_C16.qxd 4/4/06 9:10 Page 378

16.3 ■ User analysis 379

system users. As you become more aware of how they work, their concerns and
their constraints, your design can take these into account. This means that your ini-
tial designs (which you will refine through prototyping anyway) are more likely to
be acceptable to users and so convince them to become engaged in the process of
design refinement.

16.3.1 Analysis techniques

As I suggested in the previous section, there are three basis user analysis techniques:
task analysis, interviewing and questionnaires, and ethnography. Task analysis and inter-
viewing focus on the individual and the individual’s work, whereas ethnography takes
a broader perspective and looks at how people interact with each other, how they arrange
their working environment and how they cooperate to solve problems.

There are various forms of task analysis (Diaper, 1989), but the most commonly
used is Hierarchical Task Analysis (HTA). HTA was originally developed to help
with writing user manuals, but it can also be used to identify what users do to achieve
some goal. In HTA, a high-level task is broken down into subtasks, and plans are
identified that specify what might happen in a specific situation. Starting with a user
goal, you draw a hierarchy showing what has to be done to achieve that goal. Figure

••••

Figure 16.15
Hierarchical task
analysis

SE8_C16.qxd 4/4/06 9:10 Page 379

380 Chapter 16 ■ User interface design

16.15 illustrates this approach using the library scenario introduced in Figure 16.14.
In the HTA notation, a line under a box normally indicates that it will not be decom-
posed into more detailed subtasks.

The advantage of HTA over natural language scenarios is that it forces you to
consider each of the tasks and to decide whether these should be decomposed. With
natural language scenarios, it is easy to miss important tasks. Scenarios also
become long and boring to read if you want to add a lot of detail to them.

The problem with this approach to describing user tasks is that it is best suited
to tasks that are sequential processes. The notation becomes awkward when you try
to model tasks that involve interleaved or concurrent activities or that involve a very
large number of subtasks. Furthermore, HTA does not record why tasks are done
in a particular way or constraints on the user processes. You can get a partial view
of user activities from HTA, but you need additional information to develop a fuller
understanding of the UI design requirements.

Normally, you collect information for HTA through observing and interviewing
users. In this interviewing process, you can collect some of this additional infor-
mation and record it alongside the task analyses. When interviewing to discover
what users actually do, you should design interviews so that users can provide any
information that they (rather than you) feel is relevant. This means you should not
stick rigidly to prepared list of questions. Rather, your questions should be open-
ended and should encourage users to tell you why they do things as well as what
they actually do.

Interviewing, of course, is not just a way of gathering information for task anal-
ysis—it is a general information-gathering technique. You may decide to supple-
ment individual interviews with group interviews or focus groups. The advantage
of using focus groups is that users stimulate each other to provide information and
may end up discussing different ways that they have developed of using systems.

Task analysis focuses on how individuals work but, of course, most work is actu-
ally cooperative. People work together to achieve a goal, and users find it difficult
to discuss how this cooperation actually takes place. Therefore, direct observation
of how users work and use computer-based systems is an important additional tech-
nique of user analysis.

One approach to direct observation that has been used in a wide variety of set-
tings is ethnography (Suchman, 1983; Hughes, et al., 1997; Crabtree, 2003). I dis-
cussed ethnography in Chapter 7 as a technique that supports requirements
engineering. Ethnographers closely observe how people work, how they interact with
others and how features in the workplace are used to support their work. The advan-
tage of ethnography is that the ethnographer can observe intuitive actions and infor-
mal collaborations that can then spark further discussions about the work.

As an example of how ethnography can influence user interface design, Figure
16.16 is a fragment from a report of an ethnographic study on air traffic controllers
in which I was involved (Bentley, et al., 1992). We were interested in the interface
design for a more automated ATC system and we learned two important things from
these observations:

••••

SE8_C16.qxd 4/4/06 9:10 Page 380

16.4 ■ User interface prototyping 381

1. Controllers had to be able to see all flights in a sector (this was why they spread
strips out on the desk). Therefore, we should avoid using scrolling displays where
flights disappeared off the top or bottom of the display.

2. The interface should have some way of telling controllers how many flights
are in adjacent sectors so that controllers can plan their work load.

Checking adjacent sectors was an automatic controller action and it is very likely
that they would not have mentioned this in discussions of the ATC process. It was
only through direct observation that we discovered these important requirements.

None of these user analysis techniques, on their own, give you a complete pic-
ture of what users actually do. They are complementary approaches that you should
use together to help you understand what users do and get insights into what might
be an appropriate user interface design.

16.4 User interface prototyping

Because of the dynamic nature of user interfaces, textual descriptions and diagrams
are not good enough for expressing user interface requirements. Evolutionary or
exploratory prototyping with end-user involvement is the only practical way to design
and develop graphical user interfaces for software systems. Involving the user in
the design and development process is an essential aspect of user-centred design
(Norman and Draper, 1986), a design philosophy for interactive systems.

The aim of prototyping is to allow users to gain direct experience with the inter-
face. Most of us find it difficult to think abstractly about a user interface and to
explain exactly what we want. However, when we are presented with examples, it
is easy to identify the characteristics that we like and dislike.

••••

Air traffic control involves a number of control ‘suites’ where the suites
controlling adjacent sectors of airspace are physically located next to each
other. Flights in a sector are represented by paper strips that are fitted into
wooden racks in an order that reflects their position in the sector. If there
are not enough slots in the rack (i.e. when the airspace is very busy),
controllers spread the strips out on the desk in front of the rack. When we
were observing controllers, we noticed that controllers regularly glanced at
the strip racks in the adjacent sector. We pointed this out to them and
asked them why they did this. They replied that, when the adjacent
controller has strips on his or her desk, then this means that a lot of flights
will be entering their sector. They therefore tried to increase the speed of
aircraft in the sector to ‘clear space’ for the incoming aircraft.

Figure 16.16 A report
of observations of air
traffic control

SE8_C16.qxd 4/4/06 9:10 Page 381

382 Chapter 16 ■ User interface design

Ideally, when you are prototyping a user interface, you should adopt a two-stage
prototyping process:

1. Very early in the process, you should develop paper prototypes—mock-ups of
screen designs—and walk through these with end-users.

2. You then refine your design and develop increasingly sophisticated automated
prototypes, then make them available to users for testing and activity
simulation.

Paper prototyping is a cheap and surprisingly effective approach to prototype devel-
opment (Snyder, 2003). You don’t need to develop any executable software and the
designs don’t have to be drawn to professional standards. You can draw paper ver-
sions of the system screens that users interact with and design a set of scenarios
describing how the system might be used. As a scenario progresses, you sketch the
information that would be displayed and the options available to users.

You then work through these scenarios with users to simulate how the system
might be used. This is an effective way to get users’ initial reactions to an inter-
face design, the information they need from the system and how they would nor-
mally interact with the system.

Alternatively, you can use a storyboarding technique to present the interface design.
A storyboard is a series of sketches that illustrate a sequence of interactions. This
is less hands-on but can be more convenient when presenting the interface propos-
als to groups rather than individuals.

After initial experiments with a paper prototype, you should implement a software
prototype of the interface design. The problem, of course, is that you need to have
some system functionality with which the users can interact. If you are prototyping the
UI very early in the system development process, this may not be available. To get
around this problem, you can use ‘Wizard of Oz’ prototyping (see the web page for
an explanation if you haven’t seen the film). In this approach, users interact with what
appears to be a computer system, but their inputs are actually channelled to a hidden
person who simulates the system’s responses. They can do this directly or by using
some other system to compute the required responses. In this case, you don’t need to
have any executable software apart from the proposed user interface.

Further prototyping experiments may then be carried out using either an evolu-
tionary or a throw-away approach. I discuss these approaches to prototyping in Chapter
17, where I also describe a range of techniques that can be used for prototyping
and rapid application development. There are three approaches that you can use for
user interface prototyping:

1. Script-driven approach If you simply need to explore ideas with users, you can
use a script-driven approach such as you’d find in Macromedia Director. In
this approach, you create screens with visual elements, such as buttons and menus,
and associate a script with these elements. When the user interacts with these

••••

SE8_C16.qxd 4/4/06 9:10 Page 382

16.5 ■ Interface evaluation 383

screens, the script is executed and the next screen is presented, showing them
the results of their actions. There is no application logic involved.

2. Visual programming languages Visual programming languages, such as Visual
Basic, incorporate a powerful development environment, access to a range of
reusable objects and a user-interface development system that allows interfaces
to be created quickly, with components and scripts associated with interface
objects. I describe visual development systems in Chapter 17.

3. Internet-based prototyping These solutions, based on web browsers and lan-
guages such as Java, offer a ready-made user interface. You add functionality
by associating segments of Java programs with the information to be displayed.
These segments (called applets) are executed automatically when the page is
loaded into the browser. This approach is a fast way to develop user interface
prototypes, but there are inherent restrictions imposed by the browser and the
Java security model.

Prototyping is obviously closely associated with interface evaluation. Formal eval-
uation is unlikely to be cost-effective for early prototypes, so what you are trying
to achieve at this stage is a ‘formative evaluation’ where you look for ways in which
the interface can be improved. As the prototype becomes more complete, you can
use systematic evaluation techniques, as discussed in the following section.

16.5 Interface evaluation

Interface evaluation is the process of assessing the usability of an interface and check-
ing that it meets user requirements. Therefore, it should be part of the normal ver-
ification and validation process for software systems. Neilsen (Neilsen, 1993)
includes a good chapter on this topic in his book on usability engineering.

Ideally, an evaluation should be conducted against a usability specification
based on usability attributes, as shown in Figure 16.17. Metrics for these usability
attributes can be devised. For example, in a learnability specification, you might
state that an operator who is familiar with the work supported should be able to use
80% of the system functionality after a three-hour training session. However, it is
more common to specify usability (if it is specified at all) qualitatively rather than
using metrics. You therefore usually have to use your judgement and experience in
interface evaluation.

Systematic evaluation of a user interface design can be an expensive process involv-
ing cognitive scientists and graphics designers. You may have to design and carry
out a statistically significant number of experiments with typical users. You may
need to use specially constructed laboratories fitted with monitoring equipment. A
user interface evaluation of this kind is economically unrealistic for systems devel-
oped by small organisations with limited resources.

••••

SE8_C16.qxd 4/4/06 9:10 Page 383

384 Chapter 16 ■ User interface design

There are a number of simpler, less expensive techniques of user interface eval-
uation that can identify particular user interface design deficiencies:

1. Questionnaires that collect information about what users thought of the inter-
face;

2. Observation of users at work with the system and ‘thinking aloud’ about how
they are trying to use the system to accomplish some task;

3. Video ‘snapshots’ of typical system use;

4. The inclusion in the software of code which collects information about the most-
used facilities and the most common errors.

Surveying users by questionnaire is a relatively cheap way to evaluate an inter-
face. The questions should be precise rather than general. It is no use asking ques-
tions such as ‘Please comment on the usability of the interface’ as the responses
will probably vary so much that you won’t see any common trend. Rather, specific
questions such as ‘Please rate the understandability of the error messages on a scale
from 1 to 5. A rating of 1 means very clear and 5 means incomprehensible’ are bet-
ter. They are both easier to answer and more likely to provide useful information
to improve the interface.

Users should be asked to rate their own experience and background when fill-
ing in the questionnaire. This allows the designer to find out whether users from
any particular background have problems with the interface. Questionnaires can even
be used before any executable system is available if a paper mock-up of the inter-
face is constructed and evaluated.

Observation-based evaluation simply involves watching users as they use a sys-
tem, looking at the facilities used, the errors made and so on. This can be supple-
mented by ‘think aloud’ sessions where users talk about what they are trying to
achieve, how they understand the system and how they are trying to use the sys-
tem to accomplish their objectives.

••••

Attribute Description

Learnability How long does it take a new user to become productive with
the system?

Speed of operation How well does the system response match the user’s work
practice?

Robustness How tolerant is the system of user error?

Recoverability How good is the system at recovering from user errors?

Adaptability How closely is the system tied to a single model of work?

Figure 16.17
Usability attributes

SE8_C16.qxd 4/4/06 9:10 Page 384

Chapter 16 ■ Key Points 385

Relatively low-cost video equipment means that you can record user sessions for
later analysis. Complete video analysis is expensive and requires a specially
equipped evaluation suite with several cameras focused on the user and on the screen.
However, video recording of selected user operations can be helpful in detecting
problems. Other evaluation methods must be used to find out which operations cause
user difficulties.

Analysis of recordings allows the designer to find out whether the interface requires
too much hand movement (a problem with some systems is that users must regu-
larly move their hand from keyboard to mouse) and to see whether unnatural eye
movements are necessary. An interface that requires many shifts of focus may mean
that the user makes more errors and misses parts of the display.

Instrumenting code to collect usage statistics allows interfaces to be improved
in a number of ways. The most common operations can be detected. The interface
can be reorganised so that these are the fastest to select. For example, if pop-up or
pull-down menus are used, the most frequent operations should be at the top of the

••••

■ User interface principles covering user familiarity, consistency, minimal surprise,
recoverability, user guidance and user diversity help guide the design of user interfaces.

■ Styles of interaction with a software system include direct manipulation, menu systems,
form fill-in, command languages and natural language.

■ Graphical information display should be used when it is intended to present trends and
approximate values. Digital display should only be used when precision is required.

■ Colour should be used sparingly and consistently in user interfaces. Designers should take
account of the fact that a significant number of people are colour-blind.

■ The user interface design process includes sub-processes concerned with user analysis,
interface prototyping and interface evaluation.

■ The aim of user analysis is to sensitise designers to the ways in which users actually work.
You should use different techniques—task analysis, interviewing and observation—during
user analysis.

■ User interface prototype development should be a staged process with early prototypes
based on paper versions of the interface that, after initial evaluation and feedback, are used
as a basis for automated prototypes.

■ The goals of user interface evaluation are to obtain feedback on how a UI design can be
improved and to assess whether an interface meets its usability requirements.

K E Y P O I N TS

SE8_C16.qxd 4/4/06 9:10 Page 385

386 Chapter 16 ■ User interface design

menu and destructive operations towards the bottom. Code instrumentation also allows
error-prone commands to be detected and modified.

Finally, it is easy to give users a ‘gripe’ command that they can use to pass mes-
sages to the tool designer. This makes users feel that their views are being consid-
ered. The interface designer and other engineers can gain rapid feedback about
individual problems.

None of these relatively simple approaches to user interface evaluation is fool-
proof and they are unlikely to detect all user interface problems. However, the tech-
niques can be used with a group of volunteers before a system is released without
a large outlay of resources. Many of the worst problems of the user interface design
can then be discovered and corrected.

F U R T H E R R E A D I N G

Human-Computer Interaction, 3rd ed. A good general text whose strengths are a focus on design
issues and cooperative work. (A. Dix, et al., 2004, Prentice Hall.)

Interaction Design. The focus of this book is on designing interaction with computer-based
systems. It presents much of the same material as Human-Computer Interaction but in a quite
different way. Both books are well written and worth reading. (J. Preece, et al., 2002, John Wiley &
Sons.)

‘Usability Engineering’. This special issue of IEEE Software includes a number of articles on
usability that have been written specifically for readers with a software engineering background.
(IEEE Software, 18(1), January 2001.)

E X E R C I S E S

16.1 I suggested in Section 16.1 that the objects manipulated by users should be drawn from their
domain rather than from a computer domain. Suggest appropriate objects for the following
users and systems.

■ A warehouse assistant using an automated parts catalogue

■ An airline pilot using an aircraft safety monitoring system

■ A manager manipulating a financial database

■ A policeman using a patrol car control system

16.2 Suggest situations where it is unwise or impossible to provide a consistent user interface.

••••

SE8_C16.qxd 4/4/06 9:10 Page 386

Chapter 16 ■ Exercises 387

16.3 What factors have to be taken into account in the design of a menu-based interface for ‘walk-
up’ systems such as bank ATMs? Write a critical commentary on the interface of an ATM that
you use.

16.4 Suggest ways in which the user interface to an e-commerce system such as an online
bookstore or music retailer might be adapted for users who have a visual impairment or
problems with muscular control.

16.5 Discuss the advantages of graphical information display and suggest four applications where
it would be more appropriate to use graphical rather than digital displays of numeric
information.

16.6 What are the guidelines that should be followed when using colour in a user interface?
Suggest how colour might be used more effectively in the interface of an application system
that you use.

16.7 Consider the error messages produced by MS-Windows, Linux, Mac OS or some other
operating system. Suggest how these might be improved.

16.8 Write possible interaction scenarios for the following systems:

■ Using a web-based theatre booking service to order theatre tickets and pay for them by
credit card

■ Ordering the same tickets using an interface on a cell phone

■ Using a CASE toolset to create an object model of a software system (see Chapters 8 and
14) and generating code automatically from that model.

16.9 Under what circumstances could you use ‘Wizard of Oz’ prototyping? For what type of
systems is this approach unsuitable?

16.10 Design a questionnaire to gather information about the user interface of some tool (such as a
word processor) with which you are familiar. If possible, distribute this questionnaire to a
number of users and try to evaluate the results. What do these tell you about the user
interface design?

16.11 Discuss whether it is ethical to instrument software to monitor its use without telling end-
users that their work is being monitored.

16.12 What ethical issues might user interface designers face when trying to reconcile the needs of
end-users of a system with the needs of the organisation that is paying for the system to be
developed.

••••

SE8_C16.qxd 4/4/06 9:10 Page 387

••

SE8_C16.qxd 4/4/06 9:10 Page 388

