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Abstract. RouteFlow is a platform for providing virtual IP routing services in
OpenFlow networks. During the first year of development, we came across some
use cases that might be interesting pursuing in addition to a number of lessons
learned worth sharing. In this paper, we will discuss identified requirements
and architectural and implementation changes made to shape RouteFlow into
a more robust solution for Software Defined networking (SDN). This paper ad-
dresses topics of interest to the SDN community, such as development issues
involving layered applications on top of network controllers, ease of configura-
tion, and network visualization. In addition, we will present the first publicly
known use case with multiple, heterogeneous OpenFlow controllers to imple-
ment a centralized routing control function, demonstrating how IP routing as
a service can be provided for different network domains under a single cen-
tral control. Finally, performance comparisons and a real testbed were used as
means of validating the implementation.

1. Introduction
Software Defined Networking (SDN) builds upon the concept of the separation of
the data plane, responsible for forwarding packets, and the control plane, responsi-
ble for determining the forwarding behavior of the data plane. The OpenFlow proto-
col [McKeown et al. 2008], an enabling trigger of SDN, introduced the notion of pro-
grammable switches managed by a network controller / operating system: a piece of
software that controls the behavior of the switches, forming a general view of the network
and acting accordingly to application purposes.

The RouteFlow project [RouteFlow ] aims to provide virtualized IP routing ser-
vices on OpenFlow-enabled hardware following the SDN paradigm. Basically, Route-
Flow links together an OpenFlow infrastructure to a virtual network environment running
Linux-based IP routing engines (e.g. Quagga) to effectively run target IP routed networks
on the physical infrastructure. As orchestrated by the RouteFlow control function, the
switches are instructed via OpenFlow controllers working as proxies that translate proto-
col messages and events between the physical and the virtual environments.

The project counts with a growing user base worldwide (more than 1,000 down-
loads and more than 10,000 unique visitors since the project started in April, 2010). Exter-
nal contributions range from bug reporting to actual code submissions via the community-
oriented GitHub repository. To cite a few examples, Google has contributed with an



SNMP plug-in and is currently working on MPLS support and new APIs of the Quagga
routing engine. Indiana University has added an advanced GUI and run pilots with hard-
ware switches in the US-wide NDDI testbed. UNIRIO has prototyped a single node
abstraction with a domain-wide eBGP controller. UNICAMP has done a port to the Ryu
OpenFlow 1.2 controller and is experimenting with new data center designs. While some
users look at RouteFlow as “Quagga on steroids” to achieve a hardware-accelerated open-
source routing solution, others are looking at cost-effective BGP-free edge designs in
hybrid IP-SDN networking scenarios where RouteFlow offers a migration path to Open-
Flow/SDN [Rothenberg et al. 2012]. These are ongoing examples of the power of innova-
tion resulting from the blend of open interfaces to commercial hardware and open-source
community-driven software development.

In this paper, we present re-architecting efforts on the RouteFlow platform to solve
problems that were revealed during the first year of the public release including feedback
from third party users and lessons learned from demonstrations using commercial Open-
Flow switches.1 The main issues we discuss include configurability, component flexi-
bility, resilience, easy management interfaces, and collection of statistics. A description
of our solutions to issues such as mapping a virtual network to a physical one, topology
updates and network events will also be presented from the point of view of our rout-
ing application. The development experience made us review some original concepts
leading to a new design that attempts to solve most of the issues raised in the first ver-
sion [Nascimento et al. 2011].

One of the consequences of these improvements is that RouteFlow has been ex-
tended to support multiple controllers and virtual domains, becoming, as far as we know,
the first distributed OpenFlow application that runs simultaneously over different con-
trollers (e.g., NOX, POX, Floodlight, Ryu). Related work on dividing network control
among several controllers has been proposed, for reasons of performance, manageability
and scalability [Tavakoli et al. 2009, Heller et al. 2012]. We will present a solution that
uses multiple heterogeneous controllers to implement a separation of routing domains
from a centralized control point, giving the view of a global environment while keeping
the individuality of each network and its controller.

Altogether, this paper contributes with insights on SDN application development
topics that will certainly interest the vast majority of researchers and practitioners of the
OpenFlow/SDN toolkit. We expect to further evolve discussions around traditional IP
routing implemented upon SDN, and how it can be implemented as a service, opening
new ways of doing hybrid networking between SDN and legacy IP/Eth/MPLS/Optical
domains.

In Section 2 we present the core principles of RouteFlow discussing the previous
design and implementation as well as the identified issues. In Section 3, we revisit the
objectives and describe the project decisions and implementation tasks to refactor and in-
troduce new features in the RouteFlow architecture. Section 4 presents results from the
experimental evaluation on the performance of the middleware in isolation and the Route-
Flow platform in action in two possible setups, one in a multi-lab hardware testbed and

1Open Networking Summit I (Oct/2011) and II (Apr/2012), Super Computing Research Sandbox
(Nov/2011), OFELIA/CHANGE Summer School (Nov/2011), Internet2 NDDI (Jan/2012), 7th API on SDN
(Jun/2012). See details on: https://sites.google.com/site/routeflow/updates



another controlling multiple virtual network domains. Section 5 discusses related work
on layered SDN application development, multiple controller scenarios, and novel routing
schemes. Section 6 presents our work ahead on a research agenda towards broadening the
feature set of RouteFlow. We conclude in Section 7 with a summary and final remarks.

2. Core Design Principles
RouteFlow was born as a Gedankenexperiment (“thought experiment”) on whether
the Linux control plane embedded in a 1U Ethernet switch prototype could be
run out of the box in a commodity server with OpenFlow being the solely com-
munication channel between the data and the control plane. Firstly baptized as
QuagFlow [Nascimento et al. 2010] (Quagga + OpenFlow) the experiment turned out to
be viable in terms of convergence and performance when compared to a traditional lab
setup [Nascimento et al. 2011]. With increasing interest from the community, the Route-
Flow project emerged and went public to serve the goal of connecting open-source routing
stacks with OpenFlow infrastructures.

Fundamentally, RouteFlow is based on three main modules: the RouteFlow client
(RFClient), the RouteFlow server (RFServer), and the RouteFlow proxy (RFProxy).2 Fig-
ure 1 depicts a simplified view of a typical RouteFlow scenario: routing engines in a virtu-
alized environment generate the forwarding information base according to the configured
routing protocols (e.g., OSPF, BGP) and ARP processes. In turn, the routing and ARP
tables are collected by the RFClient daemons and then translated into OpenFlow tuples
that are sent to the RFServer, which adapts this FIB to the specified routing control logic
and finally instructs the RFProxy, a controller application, to configure the switches using
OpenFlow commands.

Matching packets on routing protocol and control traffic (e.g., ARP, BGP, RIP,
OSPF) are directed by the RFProxy to the corresponding virtual interfaces via a software
switch. The behavior of this virtual switch 3 is also controlled by the RFProxy and allows
for a direct channel between the physical and virtual environments, eliminating the need to
pass through the RFServer and RFClient, reducing the delay in routing protocol messages
and allowing for distributed virtual switches and additional programmability.

2.1. Architectural issues

We identified the most pressing issues in the old architecture (see Figure 2(a)) as being:

Too much centralization. Most of the logic and network view was implemented and
stored in the RFServer, without the help of third-party database implementations. The
centralization of this design raised concerns about the reliability and performance of a
network controlled by RouteFlow. It was important to relieve the server from this burden
while providing a reliable storage implementation and facilitating the development of new
services like GUI or custom routing logic (e.g. aggregation mode).

2As a historical note, the first QuagFlow prototype implemented RFServer and RFProxy as a single
NOX application. After the separation (in the first RouteFlow versions) RFProxy was named RouteFlow
controller. This caused some confusion, since it actually an application on top of an OpenFlow controller,
so we renamed it. Its purpose and general design remain the same.

3We employ Open vSwitch for this task: http://openvswitch.org/
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Figure 1. A typical, simplified RouteFlow scenario

Deficits of inter-module communication. There was no clear and direct communication
channel between the RFServer and the RFClients, and also the RFServer and the RFProxy
application in the controller. An uniform method of communication was desired, that
was extensible, programmer-friendly, and allowed to keep a convenient history of the
messages exchanged by the modules to ease debugging and unit testing.

Lack of configurability. The most pressing issue was actually an implementation limita-
tion: there was no way of telling the RouteFlow server to follow a defined configuration
when associating the clients in the virtual environment with the switches in the physical
environment. This forced the user to start the clients and connect the switches in a certain
order without allowing for arbitrary component restart. A proper configuration scheme
was needed to instruct the RFServer on how to behave whenever a switch or client joined
the network under its control, rather than expect the user to make this match manually.

3. Project Decisions and Implementation
The new architecture, illustrated in Figure 2(b), retains the main modules and character-
istics of the previous one. A central database that facilitates all module communication
was introduced, as well as a configuration scheme and GUI tied to this database. While
tackling the issues in the previous version, we also introduced new features, such as:

Make the platform more modular, extensible, configurable, and flexible. Anticipat-
ing the need for updating (or even replacing) RouteFlow components of the RouteFlow
architecture, we have followed well-known principles from systems design that allow
architectural evolvability [Ghodsi et al. 2011]: layers of indirection, system modularity,
and interface extensibility. Meeting these goals involved also exposing configuration to
the users in a clear way, reducing the amount of code, building modules with clearer
purposes, facilitating the port of RFProxy to other controllers and enabling different ser-
vices to be implemented on top of RFServer. The result is a better layered, distributed
system, flexible enough to accommodate different virtualization use cases (m : n map-
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Figure 2. Evolution of the RouteFlow architecture (as implemented)

ping of routing engine virtual interfaces to physical OpenFlow-enabled ports) and ease
the development of advanced routing-oriented applications by the users themselves.

Keep network state history and statistics. One of the main advantages of centralizing
network view is that it enables the inspection of its behavior and changes. When dealing
with complex routing scenarios, this possibility is even more interesting, as it allows
the network administrator to study the changes and events in the network, allowing to
correlate and replay events or roll-back configurations.

Consider multi-controller scenarios. We have independently arrived at a controller-
filtering architecture that is similar to the one proposed by Kandoo (as we will discuss
later in Section 5). The hierarchical architecture allows for scenarios in which different
networks (or portions of it) are controlled by different OpenFlow controllers. We can
implement this new feature with slight changes to the configuration. Furthermore, the
higher-level RouteFlow protocol layer abstracts most of the differences between Open-
Flow versions 1.0/1.1/1.2/1.3, making it easier to support heterogeneous controllers.

Enable future works on replication of the network state and high availability. Orig-
inally, the RFServer was designed to be the module that took all the decisions regarding
the network management, and we want to keep this role so that all routing policy and
information can be centralized in a coherent control function. However, centralizing the
server creates a single point of failure, and it is important that we consider possibilities
to make it more reliable. By separating the network state from its responsibilities now,
we can enable future solutions for achieving proper decentralization, benefiting from the
latest results from the distributed systems and database research communities.

All the proposed changes are directly related to user and developer needs iden-
tified during the cycle of the initial release, some in experimental setups, others in real
testbeds. In order to implement them, we went through code refactoring and architectural
changes to introduce the centralized database and IPC and a new configuration scheme.
The code refactoring itself involved many smaller tasks such as code standardization,



proper modularization, reduction of the number of external dependencies, easier testing,
rewriting of the web-based graphical user interface and other minor changes that do not
warrant detailed description in the scope of this paper. Therefore, we will focus on the
newly introduced database and flexible configuration scheme.

3.1. Centralized database with embedded IPC

We first considered the issue of providing an unified scheme of inter-process communica-
tion (IPC) and evaluated several alternatives. Message queuing solutions like RabbitMQ
or ZeroMQ,4 were discarded for requiring a more complex setup and being too large
and powerful for our purposes. Serializing solutions like ProtoBuffers and Thrift,5 were
potential candidates, but would require additional logic to store pending and already con-
sumed messages, since they provide only the message exchange layer. When studying
the use of NoSQL databases for persistent storage, we came across the idea to use the
database itself as the central point for the IPC and natively keep a history of the Route-
Flow workflow allowing for replay or catch-up operations. A publish/subscribe semantic
was adopted for this multi-component, event-oriented solution.

After careful consideration of several popular NoSQL options (MongoDB, Redis,
CouchDB)6, we decided to implement the central database and the IPC mechanism upon
MongoDB. The factors that lead to this choice were the programming-friendly and ex-
tensible JSON orientation plus the proven mechanisms for replication and distribution.
Noteworthy, the IPC implementation (e.g., message factory) is completely agnostic to the
DB of choice, should we change this decision.7

At the core of the RouteFlow state is the mapping between the physical environ-
ment being controlled and the virtual environment performing the routing tasks. The reli-
ability of this network state in RFServer was questionable and it was difficult to improve
this without delegating this function to another module. An external database fits this
goal, allowing for more flexible configuration schemes. Statistics collection performed
by the RFProxy could also be stored in this central database, based on which additional
services could be implemented for data analysis or visualization.

The choice of delegating the core state responsibilities to an external database
allows for better fault-tolerance, either by replicating the database or separating RFServer
in several instances controlling it. The possibility of distributing RFServer takes us down
another road: when associated with multiple controllers, it effectively allows for routing
to be managed from several points, all tied by a unifying distributed database.

To wrap up, the new implementation is in line with the design rationale and best
practices of cloud applications, and includes a scalable, fault-tolerant DB that serves as
IPC, and centralizes RouteFlow’s core state, the network view (logical, physical, and
protocol-specific), and any information base used to develop routing applications (e.g.,
traffic histogram/forecasts, flow monitoring feedback, administrative policies). Hence,

4RabbitMQ: http://www.rabbitmq.com/; ZeroMQ: http://www.zeromq.org/.
5Thrift: http://thrift.apache.org; ProtoBuffers https://developers.google.com/protocol-buffers/.
6MongoDB: http://www.mongodb.org/; Redis: http://redis.io/; CouchDB: http://couchdb.apache.org/.
7While some may call Database-as-an-IPC an antipattern (cf. http://en.wikipedia.org/wiki/Database-as-

IPC), we debate this belief when considering NoSQL solutions like MongoDB acting as a messaging and
transport layer (e.g. http://shtylman.com/post/the-tail-of-mongodb/).



the DB embodies so-called Network Information Base (NIB) [Koponen et al. 2010] and
Knowledge Information Base (KIB) [Saucez and et al. 2011].

3.2. Flexible configuration scheme

In the first implementation of RouteFlow, the association between VMs (running RF-
Clients) and the OpenFlow switches was automatically managed by the RFServer with
the chosen criteria being the order of registration: the nth client to register would be as-
sociated with the nth switch to join the network. The main characteristic of this approach
is that it does not require any input from the network administrator other than taking care
of the order in which switches join the network.

While this approach works for experimental and well-controlled scenarios, it
posed problems whenever the switches were not under direct control. To solve this is-
sue, we devised a configuration approach that would also serve as the basis for allow-
ing multiple controllers to manage the network and ease arbitrary mappings beyond 1:1.
In the proposed configuration approach, the network administrator is required to inform
RouteFlow about the desired mapping. This configuration is loaded and stored in the cen-
tralized database. Table 1 details the possible states a mapping entry can assume. Figure 3
illustrates the default RFServer behavior upon network events.

Whenever a switch8 joins the network, RFProxy informs the RouteFlow server
about each of its physical ports. These ports are registered by the server in one of two
ways explicited by Table 1: as (i) idle datapath port or (ii) client-datapath association.
The former happens when there is either no configuration for the datapath port being
registered or the configured client port to be associated with this datapath port has not
been registered yet. The latter happens when the client port that is to be associated with
this datapath (based on the configuration) is already registered as idle.

When a RFClient starts, it informs the RouteFlow server about each of its inter-
faces (ports). These ports are registered by the RFServer in one of two states shown in
Table 1: as an idle client port or an client-datapath association. The association behavior
is analogous to the one described above for the datapath ports.

After the association, the RFServer asks the RFClient to trigger a message that
will go through the virtual switch to which it is connected and reach the RFProxy. When
this happens, the RFProxy becomes aware of the connection between the RFClient and
its virtual switch, informing the RFServer. The RFServer then decides what to do with
this information. Tipically, the RFProxy will be instructed to redirect all traffic coming
from the a virtual machines to the physical switch associated with it, and vice-versa. In
the event of a switch leaving the network, all the associations involving the ports of the

Table 1. Possible association states
Format Type
vm id, vm port, -, -, -, -, - idle client port
-, -, -, -, dp id, dp port, ct id idle datapath port
vm id, vm port, dp id, dp port, -, -, ct id client-datapath association
vm id, vm port, dp id, dp port, vs id, vs port, ct id active client-datapath association

8Terms datapath and switch are used interchangeably.
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switch are removed, leaving idle client ports in case there was an association. In case the
datapath comes back, RouteFlow will behave as if it were a new datapath, as described
above, restoring the association configured by the operator.

An entry in the configuration file contains a subset of the fields identified in Ta-
ble 1: vm id, vm port, dp id, dp port, ct id. These fields are enough for the
association to be made, since remaining fields related to the virtual switch attachment
(vs *) are defined at runtime. The ct id field identifies the controller to which the
switch is connected. This mechanism allows RouteFlow to deal with multiple controllers,
either managing parts of the same network or different networks altogether.

Considering that the virtual environment can also be distributed, it becomes pos-
sible to run several routing domains on top of a single RFServer, facilitating the man-
agement of several routed networks under a single point. This segmentation presents a
possible solution for provisioning of routing as a service [Lakshminarayanan et al. 2004].
In this sense, our solution is capable of controlling independent networks, being differ-
ent ASes, subnetworks, ISPs or a combination of them, a pending goal of the original
RouteFlow paper [Nascimento et al. 2011] to apply a PaaS model to networking.

4. Evaluation
To validate the new developments, we conducted a number of experiments and collected
data to evaluate the new architecture and exemplify some new use cases for RouteFlow.
The code and tools used to run these tests are openly available.9 The benchmarks were
made on a Dell Latitude e6520 with an Intel Core i7 2620M processor and 3 GB of RAM.

Simple performance measurements were made using the cbench tool
[Tootoonchian et al. 2012], which simulates a number of OpenFlow switches generating
requests and listening for flow installations. We adapted cbench to fake ARP requests
(inside 60 bytes packet-in OpenFlow messages). These requests are handled by a
modified version of the RFClient so that it ignores the routing engine. This way, we are
effectively eliminating the influences of both the hardware and software which are not
under our control, measuring more closely the specific delay introduced by RouteFlow.

9https://github.com/CPqD/RouteFlow/tree/benchmark



4.1. How much latency is introduced between the data and control planes?

In latency mode, cbench sends an ARP request and waits for the flow-mod message
before sending the next request. The results for RouteFlow running in latency mode on
POX and NOX are shown in Figure 4.

Each test is composed by several rounds of 1 second in duration, in which fake
packets are sent to the controller and then handled by RFProxy that redirects them to the
corresponding RFClient. For every test packet, the RFClient is configured to send a flow
installation message. By doing this, we are testing a worst-case scenario in which every
control packet results in a change in the network. These tests are intended to measure the
performance and behavior of the new IPC mechanism.10

Figure 4 illustrates the cumulative distribution of latency values in three tests.
Figure 4a shows the latency distribution for a network of only 1 switch. In this case,
the IPC polling mechanism is not used to its full extent, since just one message will be
queued every time. Therefore, the latency for the majority of the rounds is around the
polling timeout. Figure 4b shows the accumulated latency, calculated considering all 4
switches as one. When compared to Figure 4c, which shows the average latency for all
the 4 switches, the scales differ, but the behavior is similar. The accumulated latency
shows that the IPC performs better in relation to the case in Figure 4a, mostly because the
IPC will read all messages as they become available; when running with more than one
switch, it is more likely that more than one message will be queued at any given time,
keeping the IPC busy in a working cycle, not waiting for the next poll timeout.

Another comparison based on Figure 4 reveals that RouteFlow running on top of
NOX (RFProxy implemented in C++) is more consistent in its performance, with most
cycles lasting less than 60 ms. The results for POX (RFProxy implemented in Python)
are less consistent, with more cycles lasting almost twice the worst case for NOX.

4.2. How many control plane events can be handled?

In throughput mode, cbench keeps sending as many ARP requests as possible in order
to measure how many flow installations are made by the application. The throughput
test stresses RouteFlow and the controller, showing how many flows can be installed in
a single round lasting for 1 second. The results in Table 2 show how many flows can
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1 and 4 switches (taken from 100 rounds)

10The IPC mechanism uses a 50 ms polling time to check for unread messages. This value was chosen
because it optimizes the ratio of DB access to message rate when running in latency mode. Whenever a
polling timeout occurs, the IPC will read all available messages.



be installed in all of the switches in the network during a test with 100 rounds lasting 1
second each. The results show that the number of switches influence the number of flows
installed per second, more than the choice of the controller.

Table 2. Total number of flows installed per second when testing in throughput
mode (Average, standard deviation and 90% percentile taken from 100 rounds).

Controller 1 switch 4 switches
# Flowsavg # Flows90% # Flowsavg # Flows90%

POX 915.05 ±62.11 1013.0 573.87 ±64.96 672.0
NOX 967.68 ±54.85 1040.0 542.26 ±44.96 597.0

4.3. What is the actual performance in a real network?

Test on a real network infrastructure were performed using the control framework of the
FIBRE project,11 with resources in two islands separated by 100 km (the distance between
the CPqD lab in Campinas and the LARC lab at USP in São Paulo). To evaluate the
delay introduced by the virtualized RouteFlow control plane, we measured the round-trip
time from end-hosts when sending ICMP (ping) messages to the interfaces of the virtual
routers (a LXC container in the RouteFlow host). This way, we are effectively measuring
the compound delay introduced by the controller, the RouteFlow virtual switch, and the
underlying network, but not the IPC mechanism. The results are illustrated in Table 3 for
the case where the RouteFlow instance runs in the CPqD lab with one end-host connected
in a LAN, and the second end-host located at USP. The CPqD-USP connectivity goes
through the GIGA network and involves about ten L2 devices. The end-to-end delay
observed between the hosts connected through this network for ping) exchanges exhibited
line-rate performance, with a constant RTT around 2 ms. The results in Table 3 also
highlight the performance gap between the controllers. The NOX version of RFProxy
introduces little delay in the RTT, and is more suited for real applications

Table 3. RTT (milliseconds) from a host to the virtual routers in RouteFlow (aver-
age and standard deviation taken from 1000 rounds)

Controller host@CPqD host@USP
POX 22.31 ±16.08 24.53 ±16.18
NOX 1.37 ±0.37 3.52 ±0.59

4.4. How to split the control over multiple OpenFlow domains?

In order to validate the new configuration scheme, a simple proof-of-concept test was car-
ried to show the feasibility of more than one network being controlled by RouteFlow. This
network setup is illustrated in Figure 5, and makes use of the flexibility of the new config-
uration system. A central RFServer controls two networks: one contains four OpenFlow
switches acting as routers being controlled by a POX instance, and the other contains a
single OpenFlow switch acting as a learning switch being controlled by a NOX instance.
In this test, RouteFlow was able to properly isolate the routing domains belonging to each
network, while still having a centralized view of the networks.

11http://www.fibre-ict.eu/
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5. Related work
Layered controller application architectures. Our architectural work on RouteFlow
is very similar to a recent proposal named Kandoo [Hassas Yeganeh and Ganjali 2012].
In Kandoo, one or more local controllers is directly connected to one or more switches.
Messages and events that happen often and are better dealt with less latency when treated
in these local (first hop) controllers. A root controller (that may be distributed), treats
less frequent application-significant events, relieving the control paths at higher layers.
Comparing RouteFlow and Kandoo, a notable similarity is adopting a division of roles
when treating events. In RouteFlow, the RFProxy is responsible for dealing with frequent
events (such as delivering packet-in events), only notifying the RFServer about some
network-wide events, such as a switch joining or leaving. In this light, RFServer acts as
a root controller in Kandoo. A key difference is the inclusion of a virtual environment on
top of RFServer. This extra layer contains much of the application logic, and can be easily
modified and distributed without meddling with the actual SDN application (RouteFlow).
We also differ in message workflow because routing packets are sent from the RFProxy
directly to the virtual environment, as determined by RFServer but without going through
it. This creates a better performing path, partially offsetting the introduction of another
logic layer in the architecture.

Trade-offs and controller placement. Though we do not directly explore perfor-
mance and related trade-offs, some other works have explored the problem of con-
troller placement [Heller et al. 2012] and realizing a logically centralized control func-
tions [Levin et al. 2012]. Both lines of work may reveal useful insights when applying
multiple controllers to different topologies using RouteFlow.

Network slicing. Flowvisor [Sherwood et al. 2010] bears some resemblance in that the
roles of several controllers are centralized in a unique point with global view. In this case,
the several instances of RFProxy behave as controllers, each with a view of their portion
of a network, while RFServer centralizes all subviews and is a central point to imple-
ment virtualization policies. However, our work has much more defined scope around IP
routing as a service, rather than serve as a general-purpose OpenFlow slicing tool.

Routing-as-a-Service. By enabling several controllers to be managed centrally
by RouteFlow, we have shown a simple implementation towards routing as a ser-



vice [Lakshminarayanan et al. 2004] based on SDN. OpenFlow switches can be used to
implement routers inside either Routing Service Provider (RSP) or directly at the ASes
(though this would involve a considerably larger effort). These routers could be logically
separated in different domains, while being controlled from a central interface. One of
the key points of RouteFlow is its integration capabilities with existing routing in legacy
networks. The global and richer view of the network facilitated by SDN may also help
implement some issues related to routing as a service, such as QoS guarantees, conflict
resolution and custom routing demands [Kotronis et al. 2012].

Software-defined router designs. Many efforts are going on into software rout-
ing designs that benefit from the advances of general-purpose CPU and the flexi-
bility of open-source software routing stacks. Noteworthy examples include Xen-
Flow [Mattos et al. 2011] that uses a hybrid virtualization system based on Xen and Open-
Flow switches following the SDN control plane split but relying on software-based packet
forwarding. An hybrid software-hardware router design called Fibium [Sarrar et al. 2012]
relies on implementing a routing cache on the hardware flow tables while keeping the full
FIB in software.

6. Future and ongoing work
There is a long list of ongoing activities around RouteFlow, including:

High-availability. Test new scenarios involving MongoDB replication, stand-by shadow
VMs, and datapath OAM extensions (e.g. BFD triggers). While non-stop-forwarding is
an actual feature of OpenFlow split architectures in case of controller disconnection, fur-
ther work in the routing protocols is required to provide graceful restart. Multi-connection
and stand-by controllers introduced in OpenFlow 1.x12 will be pursued as well. The fast
fail-over group tables in v1.1 and above allow to implement fast prefix-independent con-
vergence to alternative next hops.

Routing services. A serious push towards a central routing services provider on top of
RouteFlow can be made if we build the capabilities, improvements in the configurability
and monitoring in the graphical user interface in order to provide more abstract user in-
terfaces and routing policy languages to free users from low-lvel configuration tasks and
experience a true XaaS model with the benefits of outsourcing [Kotronis et al. 2012]. In
addition, router multiplexing and aggreagation will be furthered developed. New rout-
ing services will be investigated to assist multi-homing scenarios with policy-based path
selection injecting higher priority (least R$ cost or lowest delay) routes.

Hybrid software/hardware forwarding. To overcome the flow table limits of current
commercial OpenFlow hardware, we will investigate simple virtual aggregation tech-
niques (IETF SimpleVA) and hybrid software/hardware forwarding approaches in spirit
of smart flow caching [Sarrar et al. 2012].

Further testing. Using the infrastructure being built by the FIBRE project, we will extend
the tests on larger-scale setups to study the impact of longer distances and larger networks.
We intend to extend the federation with FIBRE islands from UFPA and UFSCar, and even
internationally to include resources from the European partners like i2CAT. Further work

12More benefits from moving to the newest versions include IPv6 and MPLS matching plus QoS fea-
tures. Currently, Google is extending RouteFlow to make use of Quagga LDP label info.



on unit tests and system tests will be pursued including recent advances in SDN testing
and debugging tools [Handigol et al. 2012].

7. Conclusions

RouteFlow has been successful in its first objective: to deliver a software-defined IP rout-
ing solution for OpenFlow networks. Now that the first milestones have been achieved,
our recent work helps to position RouteFlow for the future, enabling the introduction of
newer and more powerful features that go much beyond its initial target. The lessons
we learned developing RouteFlow suggest SDN practitioners to pay attention to is-
sues such as the (i) amount of centralization and modularization, (ii) the importance of
IPC/RPC/MQ, and (iii) flexible configuration capabilities for diverse practical setups.

While OpenFlow controllers often provide means for network view and config-
uration, their APIs and features often differ, making it important to speak a common
language inside an application, making it much easier to extend and port to other con-
trollers by defining so sought northbound APIs. It was also invaluable to have a central
messaging mechanism, which provided a reliable and easy-to-debug solution for inter-
module communication. As an added value to these developments, our recent work in
providing graphical tools, clear log messages, and an easy configuration scheme are vital
to allow an SDN application going “into the wild”, since these tasks can become quite
difficult when involving complex networks and real-world routing scenarios.

As for the future, we are excited to see the first pilots going live in operational
trials and further advance on the missing pieces in a community-based approach. Building
upon the current architecture and aiming for larger scalability and performance, we will
seek to facilitate the materialization of Routing-as-a-Service solutions, coupled with high-
availability, better configurability and support for more routing protocols such as IPv6 and
MPLS. This will help make RouteFlow a more enticing solution to real networks, fitting
the needs of highly virtualized environments such as data centers, and becoming a real
alternative to closed-source or software-based edge boxes in use at IXP or ISP domains.
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