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Abstract—Software Defined Networking (SDN) has opened
new ways to design, deploy, and operate networks with new
abstractions and programmability at network control and data
planes. In this paper, we approach SDN to embed virtual data
center networks employing the Network-as-a-Service model. The
proposed architecture is built upon abstractions to create a
virtual topology using BGP configurations that allow an efficient
mapping to a physical network of OpenFlow 1.3 switches. In
the control plane, an algorithm is designed to perform efficient
allocation of network resources to virtual paths based on the data
plane state, such as allocated virtual networks and resource uti-
lization metrics. Requirements such as bandwidth and resilience
are used to define the tenants policies and construct the virtual
topology graph mappings. The experimental evaluation on an
emulated testbed shows that the proposed algorithm performs
efficient load balancing and altogether yields better utilization of
the physical resources under different tenant traffic patterns.

I. INTRODUCTION

In the form of network virtualization, the allocation and
efficient use of network resources (e.g., bandwidth, switches,
addresses), have been widely implemented in data center
networks (DCNs) [1]. A virtualized data center provides com-
putational and network resources allowing tenants to apply
their own policies, define addresses spaces, manage their pool
of VMs independently, and so on. Virtual data center (VDC)
tenants often have heterogeneous network requirements such
as performance isolation, flexible traffic allocations, fault tol-
erance and load balancing [2]. Many efforts are being devoted
to deliver efficient solutions to solve multi-objective resource
optimizations in VDCs (e.g., [3], [4]) where the virtual network
embedding task becomes a challenging algorithmic issue [5].

In this paper, we explore the concept of Network-as-
a-Service (NaaS) [6] to build virtual data center networks
following a Software Defined Networking (SDN) approach.
The proposed architecture allows dynamic allocation of vir-
tual networks in data centers accordingly to bandwidth and
resilience requirements. Our prototyping efforts leverage the
RouteFlow platform [7] to define a virtual plane using the
BGP routing protocol with multipath support, following the
premises of a recent proposal [8] to operate with a folded-Clos
topology. In the data plane, we use a physical infrastructure
supporting OpenFlow protocol version 1.3 [9]. And in the
control plane, we build services and algorithms that aggregate
information from the physical and virtual planes, carry the task
of mapping network requests into virtual data center topology
graphs. Therefore, allocating physical topology resources in
order to satisfy policies accounting demands of tenants, with
their bandwidth and resilience requirements.

The core contribution of this paper is the definition of
virtual network graphs as a service based on data-centric ab-
stractions to allocate network resources efficiently. We evaluate
our virtual networks embedding approach in terms of link
stress and utilization and compares it with existing proposals
in the literature. In this sense, this work is distinguished from
others by the following aspects: (i) proposes a SDN approach
to deliver virtual networks using the BGP protocol as an
operator-friendly means well-suited to data center networks
based on folded-Clos topologies; (ii) extends the RouteFlow
platform to support OpenFlow 1.3 and offer applications with
northbound APIs to express network policies such as reserva-
tion of bandwidth and multi-path routing; and (iii) define an
efficient algorithm for mapping virtual network that provides
load balance attached to resilience and bandwidth guarantees.

The structure of this paper is as follows. Section 2 intro-
duces relevant background. Section 3 presents the proposed
architecture leaving to Section 4 the details on proposed
algorithm to allocate virtual networks. Section 5 presents our
evaluation work. Section 6 discusses the results and relates
them to the existing literature and avenues for future work.
Finally, Section 7 concludes the paper.

II. BACKGROUND

This section describes the main components in a virtualized
data center, related proposals in the literature, as well as
the RouteFlow software-defined IP routing platform, a key
component of the proposed architecture.

A. Data Center Network Virtualization

Vast amount of recent work on data center network vir-
tualization is being devote to address challenges such as:
virtualization mechanisms; cost-efficient topologies; perfor-
mance isolation; scalability; fault tolerance; packet forwarding
techniques, and so on [2]. Basically, DCN resources are used
in two forms, (i) competition or (ii) allocation. In the first case,
we highlight Seawall [10], Netshare [11] and FairCloud [12],
which propose a fair share of network resources by statistical
multiplexing and minimum bandwidth requirements to VMs
—but no deterministic guarantees of network resources (e.g.,
latency, bandwidth). In the second case, remarkable proposals
including Gatekeeper [13], SecondNet [14], Oktopus [15],
Proteus [16] and ElasticSwitch [3], perform the allocation of
minimum guaranteed bandwidth to sets of VMs (tenants) in
different ways, such as heuristics, network distributed flow
control and VMs temporal patterns communication analysis.978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



(a) Architecture (b) Components

Fig. 1: Architecture and Components

B. RouteFlow

RouteFlow [7] is an SDN routing platform that logically
centralizes network control, unifying the network information
state, and decouples the logical routing from the configuration
of network equipment. It provides IP routing protocol stacks
defined in a virtual plane mapped to the resources of a
data plane with OpenFlow support services. In the control
plane, the provision of a platform as a service concept [6]
is performed with flexible resource mapping which can be
distributed or shared. In the virtual plane, routers, defined via
Linux operating system level of virtualization (Linux Contain-
ers - LXCs), are interconnected by an OpenFlow switch. In-
side these routers, the rfclient application captures routes
computed by a routing engine (e.g., Quagga, XORP) and
sends them to the control plane. The data plane contains
OpenFlow switches connected to network controllers running
the rfproxy application. In the control plane, the rfserver
application stores all the configuration that defines the mapping
between physical and virtual planes, maintained in a database
(e.g., MongoDB), and performs the formatting and exchange
of messages between rfclient and rfproxy such as IP
routes and ARP tables computed in the virtual plane.

III. ARCHITECTURE

The proposed architecture in Fig. 1(a) results of putting
together two recent pieces of work. On one side, Route-
Flow [7], supporting virtual data center networks based on pro-
grammable control of the network with the unified information
state from virtual and data planes and the decoupling of logical
routing and configuration from network equipment. On the
other side, the DCN design by Lapuhhov et al. [8] that exploits
configuration features of the BGP protocol for intra-AS routing
in folded-Clos topology, benefiting: a practical routing design
for large data centers (DCs); simple protocol use with low code
complexity and easy operational support; minimum equipment
and routing protocol failures; and operating and capital costs
reduction. The following subsections, organized according to
the architecture planes (data, virtual and control), describe the
proposed approach to support the DCN requirements starting
by mapping the physical network infrastructure to aggregated
virtual topologies.

A. Data Plane

The data plane is based on a folded-Clos topology of
OpenFlow 1.3 switches managed by OpenFlow controllers
running rfproxy application, which captures topology dis-
covery events and sends them to the control plane to construct
the physical topology resources available for mappings. Flow
rules programmed in the physical topology use MPLS tags
to uniquely identify each tenant virtual network. In Core and
EoR switches, traffic is forwarded only by matches on these
tags. At ToRs switches, table 0 matches MPLS tags with traffic
destined inside the rack and takes the actions to withdraw the
MPLS shim layer and go to table 1, where the match occurs on
IP network addresses, and have the actions of rewriting MAC
addresses and forwarding to the next table. In Table 2, matches
on previously rewritten servers MAC addresses generates the
action of traffic forwarding to their proper connected ports.
Table 3 handles traffic to be sent out of the rack by actions of
adding a shim MPLS layer and tagging the traffic, defined on
the route that was set to a particular tenant in the control plane.
All flow rules are installed with hard timeouts to define the
permanency of a virtual topology in the data plane. Bandwidth
limitation rules in ToRs delimit rack traffic in and out by
metering tables associated respectively to the flow rules in
tables 2 and 3, and the use of group forwarding tables spreads
traffic in all data plane switches ports as ECMP behavior.

B. Virtual Plane

The rfclient application supports the detection of mul-
tipath routes computed by the Quagga routing engine running
the BGP protocol, configured with the advantages for intra-
AS DCNs in folded-Clos topology [8]. We mapped the base
topologies, physical and virtual, representing the DCN data
and virtual planes by aggregating elements containing the same
ASN of a folded-Clos topology layer. Since elements of the
same folded-Clos topology layer are not interconnected, they
have equidistant routes to all other elements of the topology,
and routes with the same AS-PATH can be computed to all
network destinations. Initially, all control messages transferred
between the virtual and data planes are passed via the network
controller. To avoid overloading the network controller, after
mapping the base topologies, flow entries are installed to keep
all control messages in the virtual plane switch.

C. Control Plane

The control plane is formed by the rfserver application
and database with the mapping state of the physical and virtual
planes, and the main components developed to perform the
virtual network embedding (see Fig. 1(b)). Resource stores
and manages graphs representing the information obtained
from the virtual (e.g., LXCs, interfaces, routes) and data (e.g.,
switches, links) planes along their attributes. This component
also instantiate physical and virtual topologies, manage and
configure their mappings and settings (e.g., routes, links),
and analyze their configuration and state. A Policy is created
when there is a virtual network allocation request containing
requirements (e.g., addresses schemes, bandwidth, resilience)
between tenant components (e.g., servers, VMs, applications).
The virtual network topology graph created by the policy
mapping is stored and associated with a unique identifier used
in flow rules programmed in the data plane.



Configuration embodies mapping and auxiliary algorithms
that perform the association between topologies, update their
resources, and maps the routes from the base virtual topology
to create virtual topologies graphs annotated with compli-
ant attributes requested by policies. The Allocator performs
the control-data plane communication sending commands to
the rfproxy application translating the abstracted virtual
topology graphs properties into OpenFlow-like data plane
messages. Scheduler performs all the interface communi-
cation with the rfserver application, handles the main
architecure setting and orchestrates its components operations.
Through it, policies are created, established and configured,
and virtual/physical topology mappings are defined as policy
constraints are dynamically allocated and deallocated.

According to the architecture initialization, the rfserver
application executes all components aforementioned as Route-
Flow platform services. In Scheduler three threads are exe-
cuted. The first, based on a mapping request (e.g., triggered by
OpenStack, Hadoop, and the like applications), performs the
representation of the tenant communication pattern creating a
traffic matrix between racks. A policy aggregating this infor-
mation with other requested network features (e.g., bandwidth,
resilience, addresses) is created and placed in a queue to
be allocated. Any VM allocation or application abstraction
technique (e.g., [17], [18]) can be programmed in this first
thread to produce a tenant traffic matrix. The second thread
checks this queue and performs the allocation of policies on the
base physical topology via the proposed mapping algorithm.
Depending on the allocation time set for each policy, the
deallocation thread removes virtual topologies from the base
physical topology.

IV. ALGORITHMS

The Configuration component has two main algorithms:
(i) the Resource Bookkepping Algorithm manages the infor-
mation of the physical topology resources to the (ii) Mapping
Algorithm build and allocate virtual topology graphs over it.
In each switch of the base physical topology object in the
control plane, two attributes stand out. The first defines a
bw port table, in the form {adjacent link port : percentage
of available link bandwidth}, which is updated each time
a link has its resource properties changed (e.g., bandwidth).
The second concerns the bw table, in the form {destination
address : [port of destination route address : percentage of
bandwidth available for the route]}, that defines the percentage
of available bandwidth to destination addresses of switch
routes. Each time a route is mapped to a link, its adjacent
switches update their bw tables as the address of the route.

Bw tables comprise the end-to-end available route band-
width, while the bw port table defines the local available
bandwidth only in adjacent switch links. Also, ToRs have
in their bw table registries of available bandwidth of their
interconnected servers and racks. The key point of the resource
bookkepping algorithm is a Breadth First Search (BFS) with
all ToRs as input nodes to walk all available paths to the
other ToRs, updating the bw tables of all the base physical
topology switches with consistent state of the mapped policies
and switches bw port tables. This update occurs only on the
base physical topology, every time a policy is created, allocated
and deallocated.

Algorithm 1 (Mapping Algorithm): Maps virtual topologies in
base physical topology
Require: base physical topology (topo phy base), base virtual topology

(topo virt base), policy
Ensure: virtual topology mapped

1: for all ToR switches in policy traffic matrix do
2: for all NetworkAddressPrefix in policy traffic matrix 6= network address range

of ToR switch do
3: lxc ← lxc of topo virt base mapped to ToR
4: SwitchesQueue.addItem(lxc, ToR, NetworkAddressPrefix)
5: SwitchesFeatures(lxc, ToR, NetworkAddressPrefix) = ToR bandwitdh to Net-

workAddressPrefix in policy traffic matrix
6: end for
7: end for
8: while SwitchesQueue not empty do
9: (lxc, switch, NetworkAddressPrefix) = SwitchesQueue.popItem()

10: if NetworkAddressPrefix not in QueuedSwitches then
11: VisitedSwitches.addItem(lxc, switch, NetworkAddressPrefix)
12: end if
13: RequestedBandwidth = SwitchesFeatures(lxc, switch, NetworkAddressPrefix)
14: switch selected routes ← SelectRoutes(switch, lxc,

NetworkAddressPrefix, RequestedBandwidth)
15: RoutesBandwidth ← RequestedBandwidth equally divided between

switch selected routes
16: for all route in switch selected routes do
17: if RoutesBandwidth[route] allocated in topo phy base link defined by route

then
18: Adds switch, route in switch and link in VirtualTopology
19: Defines DestinationLXC and DestinationSwitch as lxc and switch associ-

ated in link defined by route
20: SwitchesQueue.addItem(DestinationLXC, DestinationSwitch, NetworkAd-

dressPrefix)
21: SwitchesFeatures(DestinationLXC, DestinationSwitch,

NetworkAddressPrefix) ← RoutesBandwidth[route]
22: else
23: Mapping ← False
24: Stop execution loops
25: end if
26: end for
27: end while
28: if Mapping 6= True then
29: Undo all policy mappings done so far in topo phy base
30: end if

The algorithm 1 outputs a virtual topology graph built with
BGP route informations of the base virtual topology fitting the
available bandwidth of the base physical topology. Performing
a BFS, the mapping occurs by bandwidth annotations of
policies unique identifiers made on base physical topology
links that are performed according to the selected routes of
the base virtual topology and two policies requirements, band-
width and resilience. In Algorithm 2, the option “SelecRoutes
Agreg” has resilience policies criteria defined by percentages
of the amount of routes that will be selected of all available
mapping paths. Furthermore, the use of route selection, average
minus twice the standard deviation allows the selected routes
within two percentiles of the average values of bw port tables,
ensuring load balancing on the switch ports.

V. EVALUATION

The experimental testbed was assembled using Route-
Flow base code with the aforementioned modifications. The
rfproxy application, with OpenFlow 1.3 upgrades, was built
using the Ryu controller1. We use an OpenFlow 1.3 software
switch2 both in the data and virtual planes and defined a 48
switches folded-Clos topology using Mininet [19]. We con-
sider the physical topology and the control plane connection
between each switches to have 10,000 units of bandwidth and

1https://github.com/osrg/ryu
2https://github.com/CPqD/ofsoftswitch13



Algorithm 2 (Select Routes): Select routes to be mapped
Require: (switch, lxc, NetworkAddressPrefix, RequestedBandwidth)
Ensure: Selected routes for mapping

1: switch routes ← lxc.get routes(NetworkAddressPrefix)
2: Select switch routes with higher switch.bw port table capacity that satisfy resilience

policy requirements
3: if Option SelectRoutes Agreg then
4: Calculate mean, standard deviation, higher and smaller values from

switch.bw port table with ports defined by switch routes
5: Select combination of routes from switch routes which satisfy RequestedBand-

width divided between them and that have switch. bw port table higher or equal
to the mean less two times standard deviation of switch.bw port table

6: From previously selected routes, select those with less difference between
the higher and smaller values in case of their selection and definition in
switch.bw port table

7: Return routes previously selected
8: end if
9: if Option SelectRoutes Traditional then

10: Return route from switch routes that satisfy RequestedBandwidth of NetworkAd-
dressPrefix in switch.bw table

11: end if

1,000 between servers and switches. Furthermore, we assume
40 servers per rack and each server hosting up to 20 VMs. All
experiments were used with two virtual machines, one running
all control and virtual planes (6 Cores and 12 GB RAM), and
another executing the data plane (2 Cores and 4 GB RAM).

We evaluate the Algorithm 1 and compare the performance
of SelecRoutes Traditional and SelecRoutes Agreg strategies of
Algorithm 2. We perform the creation of mapping demands
in a Poisson process with VMs being allocated orderly as
the availability of servers bandwidth, and so building policies
as ToRs traffic matrices were defined by these allocations.
We established the following parameters for this experiment:
arrival of demands by a Poisson process with an average of
30 requests per minute. Each request contains: number of
virtual machines uniformly distributed between 30 and 70;
traffic demand between VMs uniformly distributed between
1 and 10 units of bandwidth, defined by all-to-all, all-to-one
and one-to-all traffic patterns; mapped virtual networks with
residence network time uniformly distributed between 540 and
660 seconds; and total experiment time set in 18,000 seconds.
We evaluate the proposed algorithms in terms of average
bandwidth and its variation (link stress) in physical network
links to understand the load balancing behavior on data plane
topologies (Fig. 2) switches. The results obtained show that
the SelecRoutes Agreg option excels with a minor link stress
and using a higher mean bandwidth per link, which can be
explained due to the network load balancing capabilities of the
proposed algorithms. It is important to mention we obtained
the same average of policies allocated for both algorithms, and
zero ratio of denied mapping policies in all experiments.

VI. DISCUSSION AND FUTURE WORK

The load balancing technique implemented is dynamic
and proactive as the mapping requests arrive and depart to
the Resource Bookeeping Algorithm execution in parallel with
Algorithm 1. As noted in the experimental results in Figure 2,
the proposed algorithm performs efficient load balancing in
the network for different traffic communication patterns when
compared to the algorithm SelecRoutes Traditional option,
commonly seen in the literature (e.g., [15] and [16]). We think
the Policy component does not forbid statistical multiplexing in
traffic allocation analysis to be also built into the control plane
of the architecture, to yield, e.g., work conserving [3] traffic

(a) Bandwidth used per link (b) All-to-all traffic pattern

(c) All-to-one traffic pattern (d) One-to-all traffic pattern

Fig. 2: Link Stress for different traffic patterns

allocations. [20] include discernments that meet the traffic
communication abstractions implemented in our work that, for
example, can define policies according to the VOC [15] or
TAG [18] models for traffic applications abstractions.

Besides the centralized SDN scalability limitations, we
have the logical centralized flexibility to easily program map-
ping rules into the routes selection process by matching on
different TCP/IP ports/protocols (e.g., NVGRE, VXLAN) and
setting BGP configuration knobs as proposed by [21]. As
future work, an interesting topic would be whether any multi-
path topology could be used even with non-uniform load bal-
ancing across paths (e.g., Jellyfish). In this case, for example,
a controller-based routing engine could be used instead of a
virtual topology routing plane. Also, fault tolerance inserted in
virtual networks reconfiguration is a work possibility already
observed in WANs that can be a simple extension of the
proposed architecture and mapping algorithm.

VII. CONCLUSION

In this paper, we sought to evaluate virtual data center
networks mapping using the NaaS model with the application
of SDN concepts. We built an architecture using the RouteFlow
SDN control platform to shape the entire virtualized data center
network environment. We explored the mapping of the physical
DCN infrastructure to a virtual aggregated topology where
routes from the BGP protocol – configured specifically for this
environment – are obtained to allocate virtual topology graphs.
Through algorithms implemented on the RouteFlow control
plane, we were able to show efficient mapping of virtual
networks considering bandwidth, load balancing and routing
protocol overhead. Finally, we think topics related to the
policies abstractions proposed allows to address several DCNs
problems by the extension of this work, considering different
operational and practical requirements for these networks.

ACKNOWLEDGMENT

We would like to thank CNPq for the financial support.



REFERENCES

[1] M. Rabbani, R. Pereira Esteves, M. Podlesny, G. Simon, L. Zam-
benedetti Granville, and R. Boutaba, “On tackling virtual data center
embedding problem,” in IFIP/IEEE IM 2013, 2013, pp. 177–184.

[2] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,
Q. Zhang, and M. Zhani, “Data center network virtualization: A survey,”
Commun. Surveys Tuts., IEEE, vol. 15, no. 2, pp. 909–928, 2013.

[3] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos, “Elasticswitch: Practical work-conserving bandwidth guarantees
for cloud computing,” in Proc. of the ACM SIGCOMM ’2013. New
York, NY, USA: ACM, 2013, pp. 351–362.

[4] R. Niranjan Mysore, G. Porter, and A. Vahdat, “Fastrak: Enabling
express lanes in multi-tenant data centers,” in Proc. of the CoNEXT
’13. New York, NY, USA: ACM, 2013, pp. 139–150.

[5] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Commun. Surveys Tuts., IEEE,
vol. 15, no. 4, pp. 1888–1906, 2013.

[6] E. Keller and J. Rexford, “The ”platform as a service” model for
networking,” in Proceedings of INM/WREN’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 4–4.

[7] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A.
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