
Delivering Application-Layer Traffic Optimization Services
based on Public Routing Data at Internet eXchange Points

Danny Alex Lachos Perez1, Samuel Henrique Bucke Brito1,
Ramon dos Reis Fontes1, Christian Esteve Rothenberg1

1 Universidade Estadual de Campinas (UNICAMP)
Faculdade de Engenharia Elétrica e de Computação (FEEC)

Information & Networking Technologies Research & Innovation Group (INTRIG)
Av Albert Einstein, 400, Cidade Universitária Zeferino Vaz, Campinas, SP, Brasil

{dlachosp,shbbrito,ramonrf,chesteve}@dca.fee.unicamp.br

Abstract. Application-Layer Traffic Optimization (ALTO) is a recently stan-
dardized protocol that provides abstract network topology and cost maps in ad-
dition to endpoint information services that can be consumed by applications in
order to become network-aware and take optimized decisions regarding traffic
flows. In this paper, we propose a public service based on the ALTO specifi-
cation using public routing information available at the Brazilian Internet eX-
change Points (IXPs). Our ALTO server prototype takes the acronym of AaaS
(ALTO-as-a-Service) and is based on over 2.5GB of real BGP data from the 25
Brazilian IX.br public IXPs. We evaluate our proposal in terms of functional
behaviour and performance via proof of concept experiments which point to the
potential benefits of applications being able to take smart endpoint selection
decisions when consuming the developer-friendly ALTO APIs.

1. Introduction

Internet applications like file sharing, real-time communications and those served
from Content Delivery Networks (CDNs) rely on some sort of network topology and
cost/performance information to select the best nodes in order to optimize the data trans-
fer. Each application, however, uses different means to build such overlay maps with-
out taking into account underlying network topology considerations or network oper-
ator insights. Thus, the application endpoint selection is commonly performed based
on partial and inaccurate network views or even randomly in some cases, impact-
ing both the application performance and efficient use of the networking infrastruc-
ture [Seedorf and Burger 2009].

Aiming to fill this gap, the Application-Layer Traffic Optimization (ALTO) pro-
tocol [Alimi et al. 2014] was designed to allow network operators to provide abstract net-
work information to Internet applications, which can consume this useful information to
optimize their connectivity decisions in alignment with the network operators’ cost inter-
ests and traffic engineering practices. The network information is conveyed in the form
of abstract Map Services (Network Map and Cost Map) by an ALTO server (see Fig. 1).
A Network Map divides all endpoints (e.g., IPv4/IPv6 addresses or prefixes) in Provider-
Defined Identifiers (PIDs) and a Cost Map provides the cost between each pair of PIDs so
that it is possible to have a ranking of priority or preference among any pair of endpoints.

Figure 1. Concept of ALTO and two main services: Network Map and Cost Map.

Most of ALTO implementations today are created by Internet Service Providers
(ISPs) based on their individual knowledge of their network dynamics and the costs
associated with peering and transit links [Gurbani et al. 2014]. However, recent ef-
forts [Gurbani et al. 2014] show that third parties (not associated with ISPs) can also
create valuable Network and Cost Maps from public information.

In this work, we propose a public service called ALTO-as-a-Service (AaaS)
that leverages the routing information openly available at Internet eXchange Points
(IXPs).Different from related work such as [Madhukar and Williamson 2006] that pro-
vides ALTO services through the use of ISP’s policies (not available to outside parties),
AaaS creates an operator-neutral and public ALTO services based on the BGP routing
data from public IXPs operating in Brazil by the IX.br project [Brito et al. 2015]. The
raw BGP data is converted into ALTO information, and then stored in a Graph Database
(GDB) to be then delivered to ALTO clients through an ALTO server via RESTFul APIs.
In order to define the Network Map, each Autonomous System Number (ASN) represents
a PID and every prefix (IPv4/IPv6) advertised by an AS correspond to an endpoint. Based
on this Network Map, we create different Cost Maps based on the physical or the AS-level
topological distance between each pair of ASes.

We evaluate AaaS regarding its functional behaviour (i.e. compliance to the ALTO
protocol specifications) and performance profile of our proof of concept prototype imple-
mentation based on the OpenDaylight network controller.In addition, we run a series of
experiments using a Mininet topology that reflects the BGP-based AS-level connectiv-
ity in order to validate the concept and show the potential benefits of applications using
the abstract network information from the IXP routing views easily consumable through
developers-friendly ALTO APIs.

The remainder of this paper is structured as follows. Section 2 provides an
overview of ALTO and includes a primer on IXPs. Section 3 presents the proposed archi-
tecture (AaaS) along the basic workflow. Then, the prototype implementation based on
BGP data from IX.br is described in Section 4. Section 5 validates the proof of concept
with three different experiments (functional, performance, and use case scenario). Sec-
tion 6 and 7 describe, respectively, current limitations and related work of our research.
Finally, we conclude the paper in Section 8 and point to our future work.

2. Background

2.1. ALTO Protocol

Application-Layer Traffic Optimization (ALTO) [Alimi et al. 2014] is a recently Internet
Engineering Task Force (IETF) standardized protocol (RFC 7285) with the main goal of

exposing network information so that the applications can optimize their endpoint selec-
tions and make informed decisions on questions such as: provided a source IPsrc, which
IPdst endpoints are the best1 among n candidate destinations.

At a high level, ALTO is an information-publishing interface that fills the gap
between networks and applications by allowing network operators to publicly expose ab-
stract network information. This network-to-application information flow benefits both
the network providers (i.e. ALTO information providers), who obtain better utilization of
their networking infrastructure –provided applications base their endpoint decisions fol-
lowing the ALTO cost maps– and the applications (ALTO information consumers), which
do not need to reverse engineer the network and each of them build their own topology
maps and endpoint performance rankings.

As shown in the ALTO architecture illustrated in Figure 2(a), an ALTO server
gathers network information from multiple sources, such as routing protocols, dynamic
and static network information, external interfaces, and so on. These input information is
then used to generate an abstract and unified view of the network in the ALTO server, that,
in turn, responds to ALTO client requests. The ALTO protocol is based on existing HTTP
implementations such as RESTful interfaces for client-server interaction and JSON for
request/reply encoding. ALTO Information Services (Fig. 2(b)) include two main services
(Map Service: Network Map and Cost Map) and three additional ones:

Network Map: represents a grouping of endpoints into PIDs (Provider-defined Identifier)
that may be handled similarly based on its type, topological, physical proximity, or any
other criteria. It is responsibility of the ALTO server provider to decide on the grouping
of endpoints and the definition and semantics of PIDs.

Cost Map: represents an abstract cost metric (absolute or relative) between any pair of
PIDs in the form of path costs. The path cost is a custom-made cost defined and internally
computed by the ALTO server implementation.

Map-filtering Service: responsible to filter the result of queries on the Network Map
and/or Cost Map to narrow the reply to a subset of PIDs specified by the ALTO client.

Endpoint Property Service (EPS): provides ALTO clients with information about end-
point properties (e.g. which PID belongs a particular endpoint).

Endpoint Cost Service (ECS): unlike the Cost Map (costs between PIDs), it provides
information about costs between individual endpoints.

2.2. Internet eXchange Point

An IXP is a shared physical network infrastructure regionally installed with the purpose
to facilitate the exchange of Internet traffic between ASes With the traffic exchange as
local as possible between different networks that belong to the same region, the number
of hops between ASes and dependency on transit providers is reduced.

Brazilian IXPs [Brito et al. 2015] are part of the IX.br project2, which was created
to promote the infrastructure and operational means to increase the connectivity between
AS networks of Brazilian metropolitan regions interesting in fostering local Internet traffic

1The “best” according to some cost metric defined by the ALTO server provider
2http://ix.br

(a) (b)

Figure 2. ALTO (a) Architecture (b) Information Service. Adapted from RFC 7285.

exchange. Currently, featuring 25 IXPs in operation, IX.br is the largest IXP ecosystem in
Latin America and it is among the world’s top ten both in number of members (1300+)3

and maximum throughput rate (above 1 Tbps)4.

The business model —in most cases, including Brazil— adopted by an IXP is open
(multilateral peering), commonly allowing anyone to access a large amount of BGP public
information through telnet connections to Looking Glass (LG) servers. IP control plane
information such as the BGP routing tables, the list of BGP AS-PATH, the community
codes, etc., can be retrieved, and by accessing the LGs. This open access to the public
routing information is the main input to build the ALTO maps proposed in our work.

3. Design of ALTO-as-a-Service

We propose to deliver ALTO as a public service useful to any application interested in
information about AS-level network maps for IP endpoints. The main goal is to generate
ALTO PIDs (Network Map) along a ranking of candidate PIDs (Cost Map) using the
publicly available BGP routing information at IXPs. To this end, we collect BGP tables
(IPv4 and IPv6) and parse the BGP AS-PATH attributes to create the ALTO Network
Map and Cost Map respectively. The resulting data structures are stored in a graph-based
database (Neo4j) and finally delivered as ALTO services through HTTP Rest APIs.

Figure 3 illustrates the AaaS workflow: (a) Acquiring Input Data, (b) Building
Graph Data Models, (c) Creating ALTO Information, and (d) Delivering ALTO Services
to serve ALTO client requests. Examples of ALTO clients include, but are not limited
to, (1) host running a peer-to-peer file sharing application, (2) tracker in peer-to-peer file-
sharing applications, or (3) Software Defined Networking (SDN) controllers.

a) Acquiring Input Data. This first step is to collect BGP routing data publicly available
through telnet access to LG servers, using the same methodology proposed in our IX.br
ecosystem anatomy [Brito et al. 2015]. The BGP raw data is then pre-processed (format-
ting, filtering, and assembling) to facilitate its transformation into ALTO data structures.

b) Building Graph Data Models. This process consists of building a suitable connected
graph of nodes and relationships to model the ALTO information according to the pro-

3http://ix.br/particip, Accessed: September, 2015
4http://ix.br/trafego, Accessed: September, 2015

Table 1. Nodes and its properties in our graph data model.
Name Properties Description
PID Name Name of a PID
EndPointAddress Prefix IP address and the length of the mask
AddressType Type “ipv4” or “ipv6”

VersionTag
ResourceID ID unique for a resource (e.g. a Network Map)
Tag Version for a resource

Table 2. Relationships and pairs of nodes that connect them.
Name Start Node End Node Description
Has PID VersionTag PID To know the Version to which a

particular PID belongs
Has EndPoint PID EndPointAddress For grouping Endpoint Addresses

to a particular PID
Type EndPoint AddressType EndPointAddress To indicate the type (IPv4 or IPv6)

of Endpoint Address
Cost PID PID To determine the path cost be-

tween two PIDs

tocol specification [RFC 7285]. We opt for a property graph since it provides a natural
modeling approach to inherent native graph problem at hand. In addition, this approach
eases the implementation of this model using a Graph DB (Neo4j) as we detail in the
following section. Figure 4 provides an overview of the components used in the graph,
where nodes are entities that are connected by describing their interactions, i.e. the rela-
tionships. Table 1 provides more detailed information about the graph nodes and their
properties. Information about the relationships can be found in Table 2. Noteworthy is
the relationship labeled as Cost, where properties can be included to create different path
costs between PIDs resulting in different Cost Maps.

c) Creating ALTO Information. After having the input dataset and the data model ready,
the next step is to create the ALTO information and populate the graph DB. In this step,
the ALTO server administrator uses the BGP routing information retrieved to create (i)
grouping of prefixes into PID (Network Map) by ASes, IXPs, BGP communities, points
or presence, just to cite a few examples; and (ii) defining the preferences / costs between

Figure 3. AaaS PoC Workflow

Figure 4. Neo4j Graph Data Model based on RFC 7285 [Alimi et al. 2014]

the groups PID (Cost Map) expressed on a path cost such as physical distance between
IXPs, topological distances between ASes, etc.

d) Delivering ALTO Services. The last step is deploying an ALTO web server imple-
menting the client-server protocol delivering the REST/JSON APIs to ALTO clients as
defined by RFC7285. Internal interfaces to retrieve ALTO information from the GDB are
also necessary and we opt to converge on REST/JSON for convenience.

4. Prototype

We now turn our attention to the implementation choices and prototype details of the
AaaS proof of concept. In this section, we provide further details on the BGP data set
from the Brazilian IXPs, the Neo4j5 graph-based database used as the back-end for the
ALTO information, and the OpenDaylight6 (ODL) controller used as ALTO server.

4.1. Input: IX.br BGP Data Set

The data collection methods based on LG remote access to each public IXP in Brazil
are those described in [Brito et al. 2015]. More specifically, the dataset (approx. 2.5GB)
retrieved during December 2014 was used for our prototype implementation. For data
sharing and reproducibility purposes, the raw dataset (including all our 2015 snapshots)
and all supporting code are publicly available in our research group repositories.7

For the pre-processing job of the raw data, we use a number of Java and R8 based
algorithms. For example, with R we convert the files of IPv4 and IPv6 BGP table into
a readable format and exclude prefixes that are advertised by more than 2 ASes.9 Using

5http://neo4j.com/
6https://www.opendaylight.org/
7https://github.com/intrig-unicamp/ixp-ptt-br/ https://github.com/intrig-unicamp/ALTO-as-a-Service/
8http://www.r-project.org
9ALTO protocol uses the longest-prefix matching algorithm to compute the mapping from Endpoints to

PIDs, therefore a Network Map must not define two or more PIDs that contain an identical Endpoint.

Table 3. Number of ASes and Prefixes (IPv4/IPv6) before and after the dataset
pre-processing task at Brazilian IXPs.

Raw Data After Proc. % Out 99% CL ±1 MOE
ASes 49,586 48,962 1.26% 12,460

IPv4 Prefixes 563,164 556,628 1.16% 16,163
IPv6 Prefixes 21,666 21,427 1.10% 9,412

Java-based algorithms, we discard the AS-Paths (from the files of the summary list of BGP
AS-PATH) which contain the ASN 20121 and ASN 26121 because they are reserved for
the IX.br’s LG and RS respectively and, therefore, do not participate in Internet routing.
Table 3 shows the number of ASes and the number of IPv4 and IPv6 prefixes before and
after the pre-processing. As we can see, the amount of discarded data is not significant.

4.2. ALTO Server Backend: Neo4j

As anticipated during the design discussion on the graph modeling approach, using a
Graph Database (GDB) was a natural choice to realize the model and embody the ALTO
information as a property graph. Furthermore, the ALTO protocol uses a key-value store
abstraction for JSON object coding that is very amenable for the Neo4j implementation
choice. Neo4j is an open-source non-relational GDB implemented in Java, highly scalable
and flexible. It supports true ACID transactions, high availability, and scales to billions
of nodes and relationships [Neo4j 2015]. In addition, application development is highly
facilitated through using high-speed traversal query languages such as Cypher.

As shown in Figure 5, to populate the Neo4j GDB, Java-based programs were
developed to (i) read the input dataset, (ii) create the Network and Cost Map, and (iii)
store the final property graphs into Neo4j using REST interfaces. Next we detail (a) how
the endpoints are grouped into PIDs to create the Network Map, and (b) how the path cost
between PIDs is computed to create the Cost Map:

a) Network Map. For each pre-processed IPv4 and IPv6 BGP table, the developed algo-
rithm reads each route announcement entry and extracts the ASN (Autonomous System
Number) that originated/advertised a prefix. The ASN serves as the PID (location) group-
ing resulting in a total of 48,962 PIDs (consistent with the current global amount Internet
AS). Next, each prefix (be it IPv4 or IPv6) is associated with a particular PID (i.e., AS)
considering the origin of the prefix announcement.

b) Cost Map. The path cost between PIDs is calculated as the AS-level topological dis-
tance corresponding to the amount of traversing ASes, i.e. path cost equals the number
of AS hops between a source and destination AS. A lower cost between PIDs indicates
a higher preference for traffic. Two Cost Maps variations are proposed: one which rep-
resents the absolute topological distance, and a second one which represents the relative
distance. In the latter case, hops between ASes present in the same IXPs are zeroed to
favor intra-IXP traffic.

The AS-Path summary files are used to create these maps (see Fig. 5, Cost Map).
First, we build the AS-level connectivity graph using an auxiliary GDB. Then, we com-
pute the path cost between each pair of ASes using Cypher queries. Whenever more than
one path between two ASes is found, the path with the least number of traversing ASes is

chosen. Finally, the path cost is updated in the main ALTO GDB instance.

The Cost Map is a square matrix of order N where N corresponds to the number
of PIDs resulting in over 2.3 billion (109) relationships labeled as cost (two properties
are used to distinguish between the absolute and relative distance). Hence, the process of
Cost Map creation is partially completed in a proactive manner, while the remainder of
the map is created on the fly (or reactively) based on ALTO client requests asking for path
cost between specific PIDs.

4.3. ALTO Server Front-End: OpenDaylight

In order to deliver ALTO services, we opt to reuse the OpenDaylight (ODL) controller
that features an ALTO project10 since the Lithium software release. ODL is an open
source SDN controller architecture with production quality code and proven scalable and
reliability. The initial release of ALTO in ODL includes, among other modules, ALTO
Northbound providing basic ALTO services as RESTful web services (Northbound APIs)
for ALTO client/server communications. ALTO Northbound APIs generate ALTO ser-
vices from data stored in the MD-SAL data store (an ODL core component). For our
AaaS implementation, it was necessary to modify the Northbound APIs to generate ALTO
services from the data stored in the Neo4j GDB (instead of the MD-SAL topology).

We checkout the stable/lithium branch in the ALTO project GitHub repository,11

which implements the following ALTO services: (i) full Map Service, (ii) Map-Filtering
Service, (iii) Endpoint Property Service, and (iv) Endpoint Cost Service. To accomplish
our proof of concept evaluations, our initial ALTO server delivers the Map-Filtering Ser-
vice, i.e. the filtered Network Map and the filtered Cost Map, which allow ALTO clients
to specify filtering criteria to return only a subset of the full Map Service. Hence, those
two Northbound APIs were modified so that the ALTO server retrieves information from
the Neo4j backend and converts into the ALTO format specification. All RESTFul API
modifications are available in our public repository.

10https://wiki.opendaylight.org/view/ALTO:Main
11https://github.com/opendaylight/alto

Figure 5. Map Service grouped by AS

5. Experimental Evaluation
We evaluate our proposal by carrying three different types of experiments using the proof
of concept AaaS implementation:12 (1) functional behaviour (i.e. conformance to ALTO
spec.), (2) system performance profiling, (3) emulated IXP use case scenario. Despite
using real BGP data, the use case experiments are arguably simplified and mainly serve as
a strawman to illustrate the potential of ALTO to deliver useful services to IXP members
(and third-party applications) to perform better-than-random peer selection.

5.1. Functional Evaluation

We evaluated whether the ALTO server delivers ALTO services in compliance to RFC
7285. For that, we used a REST client tool13 to retrieve ALTO information in JSON
format by communicating with the ALTO server via HTTP request. As discussed in
the previous section, two RESTful web services are available. An example of the URI,
HTTP Method, Content Type, Input Parameters and JSON Response for both the filtered
Network Map and the filtered Cost Map (absolute distance) can be seen in Figure 6. To
obtain the relative distance, HopsNumberPTT instead of HopsNumber is used as the
input Cost-metric parameter.

As expected, our AaaS prototype delivers the ALTO services in accordance with
the ALTO specifications and fully reflects the ALTO information stored in Neo4j.

(a) Filtered Network Map (b) Filtered Cost Map (absolute distance)

Figure 6. HTTP request and JSON response messages to the filtered Network
and Cost Map services.

5.2. System Performance Profiling

In order to assess the performance of our AaaS prototype, we calculate the response time
for the filtered Network and Cost Map (absolute distance) services. For both services,

12Single server configuration: Intel R© CoreTM I7-4790 @ 3.60GHz x 8 with 16GB RAM, running Ubuntu
14.04LTS (Linux) 64-bit.

13https://www.getpostman.com/

between 1 to 100 PIDs14 are randomly selected, totaling 100 requests where is request is
executed 10 times. The average transaction time is shown in Figure 7.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70 80 90 100

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
)

Number of PIDs

Network Map
Cost Map (Proactive)
Cost Map (Reactive)

(a)

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
)

Number of PIDs

Cost Map−Extra time (Proact)
Cost Map−Extra time (React)

(b)

Figure 7. (a) Response processing time for the Network and Cost Map (Absolute
Distance) services and (b) processing time used to compute two additional steps
(the number of hops and insert it into database).

For the Network Map service, we can observe that the response time increases in
proportion to the number of PIDs (See Fig. 7(a), Network Map). For example, when the
number of PIDs is 5 and 50, the average time was 0.19 Sec and 1.45 Sec, respectively.

Regarding the Cost Map service, we have two PID input parameters (see Fig.
6(b)). A single PID is used as source PID (srcs parameter) and the amount of destination
PIDs (dsts parameter) varies from 1 to 100. Another relevant factor in the response time
is whether a proactive or reactive mode is evaluated.

In order to evaluate the proactive manner, we select a source PID with all possible
path costs already created (about 49K path costs). As shown in Figure 7(a), on average,
the processing time is 19.73% (or 0.24 Sec) slower compared to the Network Map service.
We have a higher query cost, as there are two access operations to the database: one to
retrieve the source PID and one to retrieve the path cost with destination PIDs. It is also
necessary to point out that this mode does not have to spend time, i.e. 0 Sec (See Fig.
7(b), Proact) to compute two additional steps (the number of hops and insert them into
the database), as they were previously processed.

In the reactive mode, although it also has two access operations, the average pro-
cessing time is just 0.07 Sec (see Fig. 7(a), React). This behavior can be explained by
the fact that the path costs are only created for destinations PIDs of the HTTP request,
namely, up to a maximum of 100 path costs. However, for the first request, the time it
takes to execute the two additional steps must be considered; for instance, when we send
10 destination PIDs, the processing time is around 2.3 Sec (see Fig. 7(b), React). A par-
ticular case is when 62 and 92 destination PIDs are sent, we can see that it takes almost
0 Sec. This is because the selected destination PIDs already had the path cost created
with the source PID, so no additional steps were needed. Eventually, when all possible
path costs for a particular PID are already created, the response, the time should be in
proportional to the number of destination PIDs, as shown in a proactive manner.

14With 50 being the default number of candidate peers in the BitTorrent P2P application.

5.3. Use Case Scenario
We now try to assess the potential effectiveness of AaaS in delivers useful network in-
formation be so that an originating peer can make better decisions (in terms of network
performance) regarding the candidate destination peers.

Experimental Setup. The network model used is based on a small IXP ecosystem (see
Fig. 8) consisting of 22 ASes, each represented by a switch abstraction in the Mininet
emulator. A sample AS-Path summary file based on real BGP data was used to create the
AS-level connectivity in our experiment topology.15 The large AS switch represents the
IXP and then 10 communicating peers are represented as Mininet hosts attached to the
(AS abstraction) switches. Links between ASes follow the sample AS-Path attributes and
were set with larger bandwidth and lower delay when closer to the IXP.

In the case of ALTO information, the same AS-Path Summary file is used in
order to build two Cost Maps based on the topological distance (absolute and relative)
expressed as the number of hops between ASes (Fig. 8, Cost Map Rankings). Hosts that
belong to ASes present at the IXP (ie., h1, h2, h3) were defined as ALTO clients, since
the BGP data (and topology) is mostly meaningful from the IXP vantage point.

Workload and Metrics. For each ALTO client (h1, h2, h3), we run end-to-end round-trip
time measurements and available bandwidth with the remaining nine hosts using ping and
iperf tools, respectively. The main idea behind this workload is to emulate a client appli-
cation (each host) trying to connect with candidate (one of nine possible) peer applications
/ content servers based on a random selection, and then, compare the obtained bandwidth
and latency if the client had use the ALTO information to perform better-than-random

15Another noteworthy contribution of our work is the Python-based code developed to generate AS-
level topologies for Mininet based on BGP data. The topologies can be used to emulate IXP ecosystems
based onAS-Path Summary files extracted from an LGs. Source code available at: https://github.com/intrig-
unicamp/IXP-Brazil-Mininet-Code

Figure 8. The IXP-based testing network model and the Cost Map rankings based
on the absolute and relative distance between ASes.

−10

 0

 10

 20

 30

 40

h1 h2 h3

N
o
rm

a
liz

e
d
 N

e
tw

o
rk

 L
a
te

n
c
y
 (

%
)

Hosts

HopsNumber

7.40
6.10 6.90

HopsNumberPTT

7.40
6.10

7.12

(a) Latency using ping

−10

 0

 10

 20

 30

 40

h1 h2 h3

N
o
rm

a
liz

e
d
 N

e
tw

o
rk

 B
a
n
d
w

id
th

 (
%

)

Hosts

HopsNumber

6.88

19.89

5.97

HopsNumberPTT

6.88

19.89

11.79

(b) Throughput using iperf

Figure 9. Network latency and throughput gains (scenario with background traf-
fic) of h1, h2 and h3 using ALTO Cost Map ranking based on an absolute distance
(HopsNumber) and relative distance (HopsNumberPTT) metrics compared to ran-
dom peer selection.

peer selection through the use of the ALTO Cost Map ranking.

We consider both an ideal scenario without traffic as well as another with a back-
ground traffic using the D-ITG traffic generator with randomly selected source and desti-
nation pairs send TCP traffic (512 byte packet size, 1,000 pps rate).

Results Analysis. Overall, the results are encouraging as one may expect from applica-
tions being able to choose destination peers using ALTO information instead of a random
peer selection. Applications with built-in module to evaluate the network performance
from/to each candidate peer would correspond to the optimal choice from the application
point of view. However, this may not be the best one regarding the network operator
policies (e.g., avoid transit costs) and certainly not the simplest (extra code needed per
application) nor the quickest method (the application needs to assess all candidate desti-
nation IPs prior to connection setup).

Figure 9 shows the normalized latency and bandwidth (as box plots with mean,
quartiles, and max/min values) that an ALTO client would obtain when using the Cost
Map ranking compared to a random selection approach (average values used as baseline)
in a scenario with background traffic. Without traffic, results are also positive, more
expressive in terms of latency gains (see Table 4) compared to throughput improvements.

Results show an improvement in latency (Fig. 9(a)) and throughput (Fig. 9(b)) of
up to 29% could be achieved. In some cases, peers selected through AaaS may end up
with slower bandwidth or higher latency (between 1% and 11%). However, this under-
performance represents, on average, less than 25 percent of all cases.

When comparing the two proposed Cost Map rankings. Figure 8 (Cost Map Rank-
ings) shows that the Cost Map based on absolute distance (HopsNumber) suggests h3
(AS3) to seek out h5 (AS5), while the Cost Map based on relative distance (HopsNum-
berPTT) informs h3 to connect to h1 (AS1). In both cases, performance improvements
above 20% (latency and throughput) are obtained, yet when h3 uses the IXP infrastructure
to select a peer (h1), as HopsNumberPTT suggests, further throughput improvements (up
to 26%) and lower latency (up to 24%) can be obtained.

Table 4. Network Latency (ms) in a scenario with no traffic expressed as RTT AVG
and ±RTT MDEV.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 —
120.5
(±0.4)

120.6
(±0.3)

160.6
(±0.5)

160.6
(±0.5)

180.5
(±0.7)

240.8
(±0.5)

300.7
(±0.8)

360.9
(±0.8)

401.0
(±1.0)

h2 120.5
(±0.3)

—
120.4
(±0.2)

160.6
(±0.4)

160.6
(±0.4)

200.7
(±0.3)

240.9
(±0.6)

320.9
(±0.7)

360.9
(±0.8)

401.1
(±0.6)

h3 120.5
(±0.4)

120.5
(±0.5)

—
160.5
(±0.6)

140.5
(±0.4)

200.6
(±0.5)

220.6
(±0.4)

320.8
(±0.5)

340.8
(±0.4)

380.8
(±0.8)

6. Related Work
The work in [Khan et al. 2013] shows that it is possible to build the current view of the
Internet AS-level topology from the BGP route announcement of AS by using the LG
servers. The authors collected raw data from 245 LG servers across 110 countries and
build the AS topology. The main lesson learned is that LG-based methods are less error
prone than traditional traceroute-based ones, allowing raw data collection and building
the AS topology more reliable.

As shown in Fig. 2(a), the ALTO architecture allows for external interfaces, so that
third-parties may feed an ALTO server. The work in [Gurbani et al. 2014] demonstrates
how outside parties can create network topology and cost maps for ALTO from pub-
lic sources of information, specifically using the United States Federal Communications
Commission (FCC) public database from the Measuring Broadband America (MBA) pro-
gram. Similar efforts, e.g., [Pinthong and Lilakiatsakun 2013, Guanxiu et al. 2013] ex-
plore the ALTO protocol when mapping IP addresses to an AS to create a network map
and BGP route announcements to create a cost.

In the context of P2P, n-Tracker [Shibuya et al. 2011] has been proposed as an
ISP-friendly approach based on an ALTO-like server to determine the ranking of can-
didate peers. An ALTO implementation, coupled with a cloud management system is
presented in [Scharf et al. 2012], demonstrating how ALTO protocol can be used to or-
chestrate and expose information in distributed clouds to improve the user’s experience.

7. Conclusions and Future Work
To the best of our knowledge, this is the first work that explores the use of inter-domain
routing data publicly available at IXPs to create abstract topology and cost maps following
the recently standardized IETF ALTO protocol. Our proof-of-concept implementation is
based on the popular Neo4j graph database and the OpenDaylight controller and validated
the potential of applications (e.g., P2P clients or trackers, CDNs, SDN controllers) to
leverage the network awareness provided by ALTO servers to optimize their decision-
making regarding IP endpoint selection resulting better user experience. At the same
time, ISPs and ALTO service providers (in our case IX.br operators) can benefit from
increased, localized IXP traffic exchanged.

Our win-win proposal touted as ALTO-as-a-Service is not free of limitations and
there is a challenging amount of future work. Firstly, the Cost Map services are based only
on relatively static AS-Path distance and does not considering more dynamic information
such as actual bandwidth, latency, packet loss rate, etc. Creating dynamic cost maps using

public Internet quality measurements (e.g., SIMET Traffic Measurement System, RIPE
TTM) is at the top of our research agenda. The intersection of ALTO with SDN-controlled
domains are also an avenue of ongoing investigation as a means to facilitate inter-domain
traffic engineering and SDN east/west interfaces. Implementing the remaining ALTO
services (e.g., full Map-Service, EPS and ECS) is another open task, which adds to a
number of performance optimization opportunities of our prototype, most of them related
to Neo4j query tuning techniques (e.g., DB indexes, heap size, garbage collection and
Linux fs configuration).

References
Alimi, R., Penno, R., Yang, Y., Kiesel, S., Previdi, S., Roome, W., Shalunov, S., and

Woundy, R. (2014). Application-Layer Traffic Optimization (ALTO) Protocol. RFC
7285.

Brito, S., Santos, M., Fontes, R., Lachos, D., and Rothenberg, C. (2015). Anatomia do
Ecossistema de Pontos de Troca de Tráfego Publicos na Internet do Brasil. In XXXIII
Simpósio Brasileiro de Redes de Computadores (SBRC). Vitória, ES, Brazil.

Guanxiu, L., Suqi, Y., and Xinli, H. (2013). A Novel ALTO Scheme for BitTorrent-Like
P2P File Sharing Systems. In Proceedings of the 2013 Third International Conference
on Intelligent System Design and Engineering Applications.

Gurbani, V., Goergen, D., State, R., and Engel, T. (2014). Making historical connections:
Building Application Layer Traffic Optimization (ALTO) network and cost maps from
public broadband data. In Network and Service Management (CNSM), 2014 10th In-
ternational Conference on.

Khan, A., Kwon, T., Kim, H.-c., and Choi, Y. (2013). AS-level Topology Collection
Through Looking Glass Servers. In Proceedings of the 2013 Conference on Internet
Measurement Conference, IMC ’13, pages 235–242, New York, NY, USA. ACM.

Madhukar, A. and Williamson, C. (2006). A longitudinal study of p2p traffic classifi-
cation. In Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 179–188.

Neo4j (2015). The Neo4j Manual v2.3.0-M03. http://neo4j.com/docs/milestone/.

Pinthong, N. and Lilakiatsakun, W. (2013). Performance of BitTorrent-like P2P file shar-
ing systems inspired by ALTO. In TENCON IEEE Region 10 Conference (31194).

Scharf, M., Voith, T., Roome, W., Gaglianello, B., Steiner, M., Hilt, V., and Gurbani,
V. K. (2012). Monitoring and abstraction for networked clouds. In Intelligence in Next
Generation Networks (ICIN), pages 80–85. IEEE.

Seedorf, J. and Burger, E. (2009). Application-Layer Traffic Optimization (ALTO) Prob-
lem Statement. RFC 5693.

Shibuya, M., Hei, Y., and Ogishi, T. (2011). ISP-friendly peer selection mechanism with
ALTO-like server. In Network Operations and Management Symposium (APNOMS).

