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Abstract—Software Defined Networking (SDN) is a promising
architectural approach based on a programmatic separation of
the control and data planes. For high availability purposes,
logically centralized SDN controllers follow a distributed im-
plementation. While controller role features in the OpenFlow
protocol allow switches to communicate with multiple controllers,
these mechanisms alone are not sufficient to guarantee a resilient
control plane, leaving the actual implementation an open chal-
lenge for SDN designers. This paper explores OpenFlow roles for
the design of resilient SDN control plane and proposes AR2C2
as an actively replicated multi-controller strategy. As proof of
concept, AR2C2 is implemented based on the Ryu controller
and relying on OpenReplica to ensure consistent state among
the distributed controllers. Our prototype is experimentally
evaluated using real commodity switches and Mininet emulated
environment. Results of the measured times to recover from
failures for different workloads shed some light on the practical
trade-offs on replication overhead and latency as a step forward
towards SDN resiliency.

Index Terms—SDN, Resilience, High-Availability, OpenFlow.

I. INTODUCTION

By introducing a programmatic separation of control and
data planes that allows the implementation of network control
functions outside the forwarding boxes under a centralized
viewpoint, Software Defined Networking (SDN) introduces
new ways to design and operate networks [1].

In the OpenFlow [2] protocol approach to realize SDN, the
state of each network device is determined by a controller
entity, that sends all necessary information in the form of flow
table entries in addition to associated configuration data.

Like in any control plane split and centralization approach,
only one controller instance becomes clearly a single point of
failure. Delivering high available SDN control plane is still
an open challenge to which OpenFlow just provides some
options to be tackled. OpenFlow protocol version 1.2 [3]
introduced the concept of controller roles allowing different
switch interactions according to the role of each controller
with an active OpenFlow session to the switch. While the
roles (master, equal and slave) are a first step towards high
availability in the control plane, the OpenFlow standard does
not specify (nor recommend guidelines) how these roles are to

be used, leaving the right strategy choice and implementation
to SDN developers / operators.

A myriad of efforts around SDN resiliency has explored
related problems such as the placement of distributed con-
trollers [4], clustering techniques [5], aggregation and parti-
tioning [6], consistency guarantees [7], among others. So far,
few results have been published to advance the understanding
of the simultaneous connectivity options to multiple controllers
using roles available in the OpenFlow protocol.

Towards addressing this gap, this paper makes the following
contributions:

1) Analyze different resiliency strategies leveraging Open-
Flow roles, considering practical aspects when distribut-
ing network state through multiple controllers and the
underlying trade-offs around computational costs, failure
detection and recovery times.

2) Propose and implement a novel monitoring and failure
detection mechanism that effectively allows a controller
to detect control network partitions and monitor the
status of other controllers from switches. Such a mech-
anism has been recently added as an optional feature
in OpenFlow version 1.5 [8] allowing learing about the
state of switch connections to controllers. However, as
far as we know, there is no known implementation and
its effectiveness remains an open challenge.

3) A proof of concept is implemented and validated in an
experimental testbed. Time to recover from controller
failures and switch CPU consumption are evaluated in a
real testbed based on the Ryu [9] controller and COTS
switches MikroTik RouterBoards [10] running Open
vSwitch [11] with our modified daemon (vswitchd) that
implements the proposed fault handling mechanisms.

The rest of the paper is structured as follows. Section II
discusses the solution space of OpenFlow resiliency imple-
mentations; Section III presents the proposed architecture
(AR2C2); Section IV describes our experimental methodology
and evaluates the results obtained with the prototype imple-
mentation; Section V discusses related work, and , Section VI
makes final remarks and points to future work.



II. OPENFLOW RESILIENCY OPTIONS

A common controversial point in SDN is the logical central-
ization of the control plane. More specifically in OpenFlow-
based architectures, controllers need to keep a view of the
entire network, which is updated according to policies and
events such as topology changes, switch statuses, flow entries,
and so on. Changes in the centralized network view must be
consistent with the switches’ states. If the control plane is
implemented by only one controller, a single failure can lead
to the unavailability of the whole network. Hence, although
logically centralized, the control plane must be implemented in
a distributed fashion, which is ruled by the CAP (Consistency,
Availability and Partition Tolerance) theorem1 [12].

Although the current OpenFlow standards do not specify
nor provide guidelines on how to implement distributed con-
trollers, since protocol version 1.2, it specifies that switches
may simultaneously connect to multiple controllers, which
play a role that limits their ability to update or view the
switch state. More specifically, three roles are defined: master,
slave and equal. Given a switch, there are two possible
configurations for its controllers: either all of them act as
equal or a single one act as master and all the others as slave.
If a controller is in equal mode, then it has full access to
the switch’s state, being able to read and update it as well
as receive notifications from the switch regarding important
events. If a controller is the master, it is the only one that has
full access to the switch; the slave controllers can only read
the state and do not even receive notifications, except for error
and port-status messages, which signals changes in the status
of the interfaces of the switches.

OpenFlow roles allude that some sort of replication should
be implemented among controllers, i.e., redundant copies of a
controller’s state should exist and be kept consistent. There are
two classic approaches to replication: in Active Replication,
all replicas of a service equally apply all updates, determinis-
tically and in the same order, implementing a Replicated State
Machine [13], [14]; in Passive Replication, a master replica
applies the updates and forwards them to the slaves.

In spite of the allusion, in designing a replication strategy
for a multi-controller SDN control plane, many questions need
to be answered, some of which we explore in this paper.

a) Update Processing: Should multiple controllers up-
date the replicated state in parallel, or should one controller
do so and inform the others of the changes? In the first case,
should the updates be ordered to guarantee strong consistency
among the replicas’ states (Active) or should consistency be
only eventually achieved? And, in the second case, how are the
state updates propagated to the other controllers? In parallel
(Passive), in a sequence (Chain [15]) or other way? And how
large can the inconsistency window be?

b) Partitioning: Should every controller have a complete
view of the network in order to make the best decisions and,

1Also known as Brewers Theorem, claims to the impossibility of a
distributed system simultaneously ensure consistency, availability and partition
tolerance.

therefore, keep the whole state replica state, or should the view
and state be partitioned among controllers? In such case, how
to prevent concurrent updates from leading to bad decision
making in the control plane?

c) Implementation: One final but nonetheless important
question is how to implement the chosen approach? Should
the controllers actually be replicated or just their state? In
the first case, controllers must talk to each other using some
group communication framework (e.g, , QuickSilver [16], and
JGroups [17]) and on the latter, they push their data onto a fault
tolerant external datastore (e.g., Zookeeper [18], DepSpace
[19], OpenReplica [20], and Cassandra [21]).

In the following sections we discuss alternative replication
approaches, implementable atop the OpenFlow and its roles,
and how they answer these questions. The discussion includes
a novel architecture that we have prototyped and evaluated.

A. Active Replication

The first option we explore is Active Replication, also
known as State Machine Replication [13], [14]. In this sce-
nario, given a switch and a set of N controllers and using the
roles defined in the OpenFlow protocol, Active Replication
may be implemented as follows:

1) the switch connects to the N controllers; and,
2) all controllers assume the equal role.

Moreover, upon receiving an event that requires a decision by
the control plane, a message is sent to all the controllers; one
controller processes the message and replies to the switch. If
messages are delivered and processed in the same order and
the processing is deterministic, then the controllers’ state will
evolve in the same way, keeping their view of the network
consistent over time. In this scenario, in case of failure, the
remaining controllers keep operating the network regularly.

The complexity of this approach lies mostly in guaranteeing
the totally ordered delivery of all messages to all controllers.
This is trivially ensured for a single switch, but requires
expensive total order broadcast protocols [22] when multiple
switches must be controlled. The ordering may involve the
switch, in this case it would have to be modified, the con-
trollers, or be wrapped within an external datastore.

Other drawbacks of the approach are: all controllers keep
the entire network view, which may be undesirable; possibly
wasteful resource use since processing is done multiple times;
control network overload to implement total order broadcast
protocols; need extended logic on switches to deal with redun-
dant changes to the flow tables; control plane processing power
does not scale with number of controllers since they all process
the same events and keep the same state; and, controllers must
be made deterministic to prevent state inconsistency.

B. Passive Replication

The alternative Passive Replication, also kown as primary-
backup or master-slave [23], mitigates some of the undesirable
effects of the Active Replication approach. It consists on hav-
ing only one controller processing the messages, responding
to the switches and passing on its modifications to the other



controllers. Using the roles defined in the OpenFlow protocol,
Passive Replication may be implemented as follows:

1) one controller assumes the master role; and,
2) the other controllers assume the slave role.
This approach has its own disadvantages. If deciding on

how to update the network view is more expensive than
actually doing it, then, since the master is the only one making
decisions, the slaves save in processing. However, it requires
all slave controllers to monitor the master and that one of
them assumes the master role in case of failures. Moreover,
since the master may fail after updating the switch but before
the slaves are updated, in case of failure the new master may
be inconsistent with the switch. Finally, the single master
controller may become the bottleneck in the control plane.
This problem leads us to a variant approach, presented next.

C. Multi Master/Slave Replication

A third approach to provide resilience to the control plane
is to partition the network and distribute partitions to different
masters. That is, given a set of M switches and a set of N
controllers, this configuration does the following:

1) for each switch in the network, only one controller
assumes the master role; and

2) for each switch in the network, N−1 controllers assume
the slave role.

This proposal has the obvious advantage that the controllers
do not become the bottleneck, since each master is responsible
for only a fraction of the network events. Also, switches are
updated by only one controller at a time and hence may keep a
simpler logic. However, there are still questions to be answered
and probably the most important one is: how to ensure a
consistent network view, since it is partitioned among multiple
controllers? That is, if concurrent events change different
partitions, how to ensure that the changes are consistent? Also,
since this is essentially doing multiple instances of Passive
Replication in parallel, it incurs in the same risks of getting a
master inconsistent with its switches.

D. Replication via External Datastore

A last option we explore here is to use an external datastore
to wrap the replication and provide fault-tolerance to the
control plane. This approach may be used with any of the
previously discussed ones. That is, for example, the datastore
may be used as a fault tolerant communication channel for
the master controllers to propagate updates to the slaves, it
can be used to agree on the order of updates to be applied
by controllers in equal mode, or it can serve as a distributed
shared memory where the network view is stored and each
portion of it is read-only to all but one controller, effectively
implementing the multi master/slave strategy.

Several options for the external storage exist, such as the
distributed database Cassandra [21], the dependable tuple
space DepSpace [19], or the generic “file system” provided by
ZooKeeper [18], and each has different requirements and guar-
antees. Cassandra, for example, provides eventual consistency

and, therefore, if used to store the network view, may lead
controllers to temporarily disagreeing on such view. Ensuring
stronger consistency requires a majority of the servers imple-
menting the datastore to remain up and connected, as implied
by CAP. If the controllers themselves were implementing the
service, this might be problematic, but since the store does not
depend on the controllers to run, this approach allows for a
greater number of controller failures; as long as at least one
remains alive, the network may remain functional. The extra
delay the controllers face to reach the service, however, may
be prohibitive.

III. AR2C2 – RESILIENT ARCHITECTURE DESIGN AND
IMPLEMENTATION

Aiming to deal with the trade-offs presented in Section II,
we present AR2C2 as a resilient control plane strategy based
on actively replicated controllers.

A. Architecture Design

Adhering to best practices in the design of resilient ap-
plications, in order to maintain a consistent centralized view
of the network by the distributed controllers, the proposed
architecture follows the multi/master replication approach with
external data store as presented in the previous sections.

Two main requirements arise: (i) all controllers must be
able to process packet-in messages, so, they act as master in
a parallel way; (ii) the distribution of the state must be active,
taking the scalability in the control plane while the network
state is replicated proactively between controllers (see Fig. 1).

TCP

Controller ControllerN1

R1 RN

switch switch1 M
master slave

Open Replica*

Fig. 1. Architecture Design: Resilient Proposal.

We use partitions because in scenarios in which updates
are mostly independent of each other (controllers only update
nearby switches even if based on the state of other parts of
the network), this scheme will provide the best scalability. The
external datastore is employed so that as long as one controller
is up, the network remains functional, even if with degraded
performance.
B. Prototype Implementation

To deal with the consistency requirements of the network
state, we opt for a data store implementation based on Open



Replica2. Open Replica is a service that provides replication
and synchronization for large scale distributed systems that
uses an object oriented approach to actively create and keep
live replicas for objects provided by the user. Therefore,
transparently to the controllers, the replicated objects are
accessed as if they were local objects.

The proposed resilient controller implementation is based
on two main modules:

1) ConnectionManager manages the communication be-
tween controllers, coordinates role change operations,
failure recovery, failure repair and failure detection.

2) Application loads the SDN application to be executed
in a distributed way.

As the controllers’ execution is started, the modules are
loaded in sequence, being ConnectionManager the first
one. As soon as the switches connect to the controllers,
the ConnectionManager module executes an operation that
configures the roles for each switch, and each switch connects
to exactly one controller with the master role and to N − 1
controllers with the slave role.
C. Failure Recovery and Repair

Our system assumption is based on an synchronous com-
munication model with fail-stop failures at the control plane.
This section describes the procedures for failure recovery and
failure repair as follows.
Failure Recovery consists in a procedure that makes a
controller that is still active become the new master for all
the switches that lost its master controller. This procedure,
summarized by the following steps, can be triggered by any
controller which detects the failure:

1) As soon as the controller failure is detected, the
ConnectionManager module executes a function that
verifies which switches are controlled by the failed
controller to send a role-request message;

2) Each switch that receives the role-request message
replies with a role-reply message to confirm the opera-
tion and change its master controller. From now on, the
switch has a new master.

Failure Repair occurs when the faulty controller becomes
alive and can process packets again. In this case, this controller
executes a migration protocol to again become the master of
the switches it controlled before the failure. In this procedure,
we use a variation of the migration protocol presented in [24].
When the controller becomes available again, it queries the
datastore to check the controller that is the current master of
a set of switches. Then, this new controller sets the roles for
all the switches it controlled before the failure to operate in
equal mode.

Fig. 2 depicts the protocol failure repair. In this scenario,
controller 2 was the master for switch 2 but it failed. So,
Controller 1 becomes the new master for switch 2. When
Controller 2 becomes alive again and should be set as the
master for switch 2, the following steps are executed:

2http://openreplica.org/

Phase1. Controller 2 sends a start-migration message to
Controller 1 to trigger the migration process;
Phase2. Controller 1 sends a specific flow-mod message to
switch 2. This message contains a dummy-flow configuration
followed by a barrier-request message. This barrier message
interrupts the processing of any packet that is received by
switch 2, it ensures the processing of all packets before this
message. The switch 2 must confirm this blocking process
by sending a barrier-reply message to Controller 1. After
receiving this confirmation, Controller 1 removes the dummy-
flow from switch 2 and it must be confirmed to both Controller
1 and 2 switches with a flow-removed message. It notifies to
Controller 2 that it must be prepared to be the new master for
switch 2 in phase 4;
Phase3. Pending packets, received during phase 2, must be
processed by Controller 1. So, a new barrier message is sent
from controller 1 to switch 2 to notify it for not forwarding
new packet-in messages to Controller 1 and to indicate that
pending packets are being processed. Switch 2 confirms with
a barrier-reply message and, upon processing, Controller 1
sends an end-migration message to Controller 2 to conclude
the migration process;
Phase 4. Controller 2 sends a role-request-master to switch 2,
which replies with a role-reply message finishing the migration
process. Note that this last phase is similar of failure recovery
procedure previously discussed.

Fig. 2. Protocol Failure Repair.

D. Failure Detection

Our AR2C2 strategy assumes an OpenFlow network with
multiple controllers in a Multi Master/Slave configuration.
Two different ways to monitor control plane failures are
available: (i) switch-based, and (ii) controller-based failure
detection mechanisms.

1) Failure Detection from Switches: Since an OpenFlow
switch knows its master and n slaves, we propose a change
at the OpenFlow agent implementation (e.g. ovs-vswitchd
daemon) to get a list of controllers to be monitored by querying
the Open vSwitch Database using JSON messages.3 Then, the
failure detection mechanism illustrated in Fig. 3 takes place.

3http://json.org/



The failure detection phase consists in sending regular
messages every 3.33 ms (cf. Continuity Check Message -
CCMs from Carrier Ethernet standard [25]) to its master
controller. If the switch does not receive three consecutive
OFPEchorequest messages, a loss of connection between
switch to its master controller is assumed. In the notification
phase, a OFPPortStatus message is sent to N − 1 slave
controllers. This message is received by all slave controllers
so that one of slaves can become the new master controller of
the “orphan” switch and it starts the failure recovery process.
The new master controller can be selected based on a list
of priorities that is shared among controllers using the Open
Replica service.

Fig. 3. Failure Detection from switches.

2) Failure Detection from Controllers: In a multi mas-
ter/slave replication, assuming an SDN with N controllers and
M switches, one controller is master of one switch and slave
for M − 1 switches and has to monitor N − 1 controllers.
The failure detection mechanism is implemented through keep-
alive messages provided in API BSD sockets supported by
the Ryu controller. More specifically, one thread is created to
monitor the socket descriptors in a busy-wait operation mode.
In case of a controller failure, the remaining controllers wait
until the return of the socket system call, which corresponds
to the lowest bound in failure detection time supported by the
operation system.

This approach uses N−1 detectors and consequently N−1
connections to be managed per controller. It generates ((N −
1)∗N) messages in the control plane which leads to scalability
concerns of this detection mechanism.

IV. EXPERIMENTAL EVALUATION

Our experimental evaluation is structured as follows. The
first part (IV-A) presents our testbed environment. The second
part (IV-B) quantifies (i) the time to recover from a controller
failure, and (ii) the time to repair a failed controller when
varying the rate of packet-in/s. We evaluate the impact of the
dataplane load on failure recovery and repair time as well
as the failure detection effect on the overall failure recovery
process. The focus of the third part (IV-C) is on measuring
the latency for packet-in processing when the number of
controllers changes. Finally, a trade-off discussion on latency
and replication is presented in the fourth part (IV-D).

A. Prototype and Testbed Environment

The proof of concept prototype was validated in (i) a testbed
composed by 2 controllers and 2 low-cost COTS switches,
and (ii) a Mininet emulated environment. The switches in
the testbed are Mikrotik-RouterBoard model RB2011 iLS-IN
modified to support OpenFlow 1.3 and controller roles. In
addition to the cost factor, behind this hardware choice are
our goals to explore commercial hardware capacities and to
infer the prototype behaviour in a real network environment.
The switch firmware was replaced with OpenWRT4, featur-
ing Open vSwitch (OvS) as the forwarding engine [11] as
described in previous work [26].

The Ryu controllers run5 the ConnectionManager module
and a learning switch in OpenFlow 1.3 as the Application
module with the NIB (Network Information Based) replicated
using OpenReplica. The experimental setup assumes no du-
plicated or lost messages in the control plane.

B. Time to Failure Recovery and Repair

In order to measure the operations performed by the
controllers, four timestamps were inserted in the controller
application. Two of these timestamps are collected during
the failure recovery process, (i) as soon as the controller
sends a role-request message to the switch, and (ii) right after
receiving the role-reply message. The other two timestamps
are collected in the failure repair process: (iii) right after the
migration is started, and (iv) at the time the controller receives
a message finishing the migration process. For each parameter
to be measured, 30 samples were collected with a confidence
interval of 95% calculated for these samples. We only consider
the time to failure recovery and repair and not the failure
detection time.

When measuring the switch CPU usage to process packet-
in messages, the maximum message rate is limited not by the
controllers but by the switch hardware, in particular the CPU
utilization being the bottleneck of these tests. Thus, we limit
this rate to a maximum of 1.000 packet-in/s (CPU 100%),
starting at 250 and measuring for 500 and 750 packet-in/s.
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Fig. 4. Time to failure recovery and repair varying packet-in/s.

4https://openwrt.org/
5Intel Core i5 3.2GHz with Linux Ubuntu 14.04 64bits



Figure 4 shows the results for failure recovery, failure repair
and CPU usage as the rate of packet-in/s increases. When
there is no control plane traffic (i.e. packet-in/s = 0), the time
to failure recovery was 1,87ms against 8,42ms for repair, on
average. Increasing the rate of packet-in/s to 250, there is still a
difference between failure recovery and repair from 7,59ms to
14,19ms, on average. This difference occurs because the repair
mechanism requires more control messages to be processed
for the switches. As the load increases, for packet-in/s values
greater than 500, the difference becomes statistically irrelevant.
This is explained by the fact that CPU usage at the switch
increases with the rate of packet-in/s. For instance, for a rate
of 250 packet-in/s i.e. 56 Kbps considering that a packet-in has
224 bits [27]), the switch CPU usage was 77,33%. In other
words, the OpenFlow switch needs to use considerable CPU
cycles for processing control messages even for small rates of
packet-in/s. Increasing the rate to 500 packet-in/s (128 Kbps
of control channel traffic), it goes up to 84,53%. For 750 and
1.000 packet-in/s, the CPU usage reaches 96,4% and 99,0%
respectively –pointing to the practical limits in terms of switch
processing capacity.

1) Impact of the Dataplane Load: When a controller needs
to change the role for a given switch, this change leads to
a computational cost of control messages competing with
regular data packets switch CPU resources. In this experiment,
it was verified that 720Mbps of traffic is a practical limit of
the switch data plane with the CPU usage reaching 95.73%.

Figure 5 presents the impact of the dataplane load in
the processes of failure recovery and repair. We vary the
traffic load from 180 Mbps to 540 Mbps, while keeping
the CPU not overloaded. The failure recovery takes 3,39ms
compared to 17,37ms for repair, on average. This difference
is not significant as the traffic load reaches 540 Mbps, which
suggests once again that the recovery and repair process are
not efficient under switch overload conditions. These results
confirm that the switches’ CPU are extremely sensitive to
packet-in processing (Kbps) compared with forwarding of
regular packets (Mbps).

 0

 10

 20

 30

 40

 50

 60

 70

      180       360       540
 20

 30

 40

 50

 60

 70

 80

 90

T
im

e 
(m

s)

C
P

U
 U

sage (%
)

Mbps

Failure Recovery
Failure Repair

RB CPU

Fig. 5. Impact of the load at dataplane for recovery and repair.

A final remark is that the time to repair a failed controller is
higher than the time to recover from a controller failure. This

is due to the larger amount of messages exchanged in the
repair process but also the logic behind the control messages.
The repair depends on the barrier-message which indicates
that, once received, the switch must process all the pending
messages before any other message arrived after this message,
contributing to the observed difference.

2) Impact of failure detection: We know turn our attention
to the impact of the failure detection component in the com-
plete recovery process not considered in the previous analyses.
A second purpose of this section is to compare from the
effectiveness of failure detection when carried by controllers
compared to switches, as explained in Sec. III-D.

In this experiment (Fig. 6), a switch 1 is connected to
Controller 1 operating as master and to Controller 2
operating as slave and a switch 2 is connected to Controller
2 operating as master and to Controller 1 operating as slave.
A failure is injected to Controller 1, which stops responding
and triggers the failure detection and recovery time evaluation.
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As shown in Fig. 6, our switch-based failure proposal is
more efficient than detection by controllers, reducing by 50%
the time to detect a controller failure. This technique tends to
be stable as long as the rate of packet-in/s does not overload
the switch. When the rate of packet-in/s increases to 500, the
recovery component in the overall process becomes more im-
portant. For heavy loads at the switches, in this case packet-in/s
greater than 750, there is basically no noteworthy difference
between failure detection approach (switch or controller) given
that the switch overload is the dominant factor.
C. Latency for processing packet-in messages

Our objective in this experiment was to evaluate the impact
on latency for processing packet-in messages when a controller
fails. Hence, the remaining controller has to assume the master
role, but also is in charge of processing all the incoming traffic
to the control plane.

The results (Fig. 7) show that the load balancing between
two controllers is crucial for reducing the latency for process-
ing packet-in messages. Latency stays in the order of 1 ms
for a rate four times higher (from 250 to 1.000). However,
if the control plane needs to process a rate of packet-in(s)
with only one controller replacing the failed controller, latency



grows much faster as the rate increases. For instance, after a
failure for 1.000 packet-in/s, latency was basically 8 times
higher from 1.332µs to 8.200µs. This analysis reinforces the
importance of a scalable, load-balanced SDN control plane.
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Fig. 7. Latency for packet-in processing with one and two controllers.

D. Emulated Environment: Latency versus Replication

Due to the limited number of available switches in our
lab, we evaluated the prototype with a larger scale data
plane using the Mininet emulator. This experiment aims at
understanding the trade-off between the latency to process
packet-in messages and the number of replicated controllers.

In our AR2C2 approach, given M switches and N con-
trollers, we set each switch to connect to its master controller
(1 : 1) and a controller operating in slave mode for the N −1
controllers.

TABLE I
AVERAGE LATENCY IN MILLISECONDS ACCORDING TO THE NUMBER OF

CONTROLLERS AND THE RATE OF packet-in/s PER CONTROLLER.

# of
Controllers

250
packet-in/s

500
packet-in/s

750
packet-in/s

1.000
packet-in/s

2 0,73 ±0,08 0,97 ±0,16 1,1 ±0,17 1,13 ±0,22
3 1,26 ±0,19 1,35 ±0,13 1,88 ±0,4 2,25 ±0,38
4 1,38 ±0,12 2,56 ±0,57 3,38 ±0,98 8,36 ±1,52
5 1,81 ±0,4 2,7 ±0,21 4,72 ±0,79 13,2 ±0,93

Table I summarizes the results varying the number of
packet-in(s) sent to the control plane and the number of repli-
cated controllers. As expected, higher replication implies in
higher latency, but the table allows comparisons among equiva-
lent configurations. For instance, SDN designers choosing two
(2) controllers with a rate of 1.000 packet-in/s, the latency
is around 1,13ms compared to a similar configuration with
four (4) controllers processing 500 packet-in/s where latency
is around 2,56ms. Latency becomes considerable higher as the
replication increases, in particular for more than 3 controllers
and a load higher than 750 packet-in/s, latency achieves around
13ms (13 times higher).

From the reliability perspective, a designer can choose a
more reliable configuration with little impact on latency. If
the rate of packet-in/s is not heavy (e.g. 250, 500), then the
increase on the number of replicas has a small effect on
latency. For a rate of 250 packet-in/s, latency was from 0,73 ms
with 2 replicas to 1,81 with 5 replicas. This trade-off between
reliablity and latency can be set according to the requirements
of SDN designers.

V. RELATED WORK

There are many research questions that are still open in
related work about high availability in distributed SDN control
planes. ONIX [6] is among the pioneers in this area. ONIX
partitions the network view between different controllers,
which share their states and information using Data Stores.
In ONIX, however, connectivity between network devices and
multiple controllers is not discussed, neither the treatment of
failures, which is up to the SDN developers.

Related work [28] on distributed SDN control planes ex-
ploring to implement distributed controllers proposed a Pas-
sive Replication scheme where switches connect to only two
controllers: a primary, and a secondary one. The primary
controller is responsible for processing all packets and keeps a
copy of its state in the secondary one. In the implementation
alternative using Active Replication, switches connect to all
network controllers and all of them process packets simultane-
ously. This technique allows the network state to be replicated
in each controller, once all the controllers process the same
packet. Although this work started a relevant discussion on the
topic, both implementations used OpenFlow protocol version
1.0, without aiding SDN developers on their task to implement
resiliency mechanisms to tackle the open problems on the
available options discussed in Section II.

The SmartLight [29] multi-controller architecture is a vari-
ation of the passive approach, in which there is only one
main controller and N backup controllers. A coordination
service was also implemented between the controllers so that
in case of a failure of the master controller, one of the backup
controllers can take over. The solution relies on an external
Data Store to distribute network states. The main difference
between SmartLight and our proposal (AR2C2) is on the
single main controller approach by SmartLight, which limits
the capacity of the control plane. Additionally, in case of a
failure in the main controller, the controller which assumes
the network control needs to retrieve all network state from
the Data Store, increasing the latency to recover from failures.

Studies on high-availability of OpenFlow controllers [30]
proposed a redundancy method that also uses the multiple-
controller role features introduced in OpenFlow version 1.2.
However, the works do not provide results on testbed experi-
ments nor relies on a network information base (Data Store) to
share network states and hence apply best software engineer-
ing practices to build a distributed SDN control plane. Table
II shows the main features of the aforementioned systems.

TABLE II
KEY FEATURES OF OPENFLOW CONTROLLERS WITH DISTRIBUTED

CONTROL PLANE.

System Open
Flow

Version

Open
Flow
Roles

Data
Store

Replication
mode

Elastic
Control
Plane

Onix 1.0 No Yes Active/Passive Yes
Fonseca [28] 1.0 No No Active/Passive No
SmartLight 1.3 Yes Yes Passive No
Kuroki [30] 1.2 Yes No - Yes

AR2C2 1.3 Yes Yes Active Yes



VI. CONCLUSION AND FUTURE WORK

This paper explores OpenFlow roles for the design of
resilient SDN control plane. After understanding the solution
space, we propose AR2C2 as an actively replicated multi-
controller approach using master/slave role configuration and
modern, fault-tolerant data store services. The proof of concept
implementation based on the Ryu controller and OpenReplica
to ensure consistent state among the distributed controllers
was experimentally evaluated using real COTS switches with
a modified Open vSwitch agent to support the proposed tech-
niques. We verified the effectiveness of switch- and controller-
based approaches to detect failures in the real testbed and
emulated topologies. System limits were observed when in-
troducing failures into the controllers under different data and
control plane workloads. As expected, the switch CPU was
pointed as a critical factor in the system performance and
direct impact on the time to repair and recover from failures.

Altogether, our work complements related work towards
high-available SDN and presents tangible results on the feasi-
bility of implementing strong consistency in multi-controller
setups. As future work, we intend to explore load balancing
between SDN controllers and optimize the failure detection
time through kernel space implementations. Experimenting
resilient solutions of real SDN applications (e.g. RouteFlow)
and understanding the trade-offs of network partitions and
partial controller views are also part of our research roadmap.
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