
The libfluid OpenFlow Driver Implementation

Allan Vidal1, Christian Esteve Rothenberg2, Fábio Luciano Verdi1

1UFSCar 2UNICAMP

32nd Brazilian Symposium on Computer Networks and
Distributed Systems

May 5-9 2014



Outline

1 Introduction

2 Identified issues

3 The libfluid architecture

4 Implementation details

5 Demonstration

6 Conclusion



SDN

What is SDN?
Software-defined networking (SDN) is a set of approaches to
networking aiming to improve network programmability, removing
logic functionality from close hardware and putting them in the hands
of developers

Why SDN?
It emerged as a way to control networks programmatically, as a
solution to several management problems common to networks
worldwide [1]:

Automatic configuration

Global view of the network

Custom software on commodity hardware



OpenFlow and SDN

What is OpenFlow?

The OpenFlow protocol [2] was proposed as a solution to the lack of
programmability in networks. It is a common language (like an API)
that is used by control software and networking equipment.
Complexity lies in the control agent that commands the network
equipment. OpenFlow is an approach to SDN that doesn’t break
with existing technologies such as Ethernet and TCP/IP.



SDN and OpenFlow: overview

Network 
administrator

Network device A

Adm. interface A

Network 
administrator

Network device A

SDN interface

Network device B

SDN interface

SDN application 
and logic

Traditional networking model

Network logic A

Network device B

Adm. interface B

Network logic B

SDN networking model

Figure: Traditional and SDN models compared



Identified issues

SDN in general
Issue 1: a unified connectivity layer for both controllers and
equipment agents

Issue 2: minimal overhead on applications and no performance
compromise

Issue 3: requirement assumptions of controller applications

Specific to OpenFlow
Issue 4: a single, portable and lightweight implementation

Issue 5: protocol version agnosticism

Issue 6: make it possible to build stand-alone applications



Our proposal

Current OpenFlow layer implementations fall short on the issues we
mentioned.
By building a simple set of abstractions for the control channel and
providing a clear, separate implementation of the connectivity layer,
we can benefit controller, switch and application developers by
making development easier.
A small set of tools on top of this implementation can further help
adaptation to different use cases and network applications without
sacrificing ease of use, performance or technology choices.



General architecture overview
Based on the issues and our ideas, we arrived at the following
practical implementation guidelines:

Issue 1: a unified connectivity layer for both controllers
and equipment agents
Implement the software as a library that can be bundled in both
sides and use common OOP abstractions to reuse code.

Issue 2: minimal overhead on applications and no
performance compromise
Correctly use an already existing and well-tested solution for the
event loop library.

Issue 3: requirement assumptions of controller
applications
Don’t overuse object orientation abstractions and explore how
multithreading can be leveraged to answer different
requirements.



General architecture overview (cont.)

Based on the issues and our ideas, we arrived at the following
practical implementation guidelines:

Issue 4: a single, portable and lightweight implementation
Implement the software as a portable library and use a
third-party, portable and lightweight event loop library as the
basis.

Issue 5: protocol version agnosticism
Completely separate the messaging and connectivity layers so
that the connectivity layer only assumes a few basic, unchanging
protocol guarantees.

Issue 6: make it possible to build stand-alone applications
Implement the software as a library, so that it can be directly
linked into applications.



General architecture overview (cont.)

Software library

Thread 1

Event
Loop

Thread 2

Event
Loop

Core protocol connectivity implementation

Thread n

Event
Loop

Protocol message layer User application (e.g: controller, stand-alone 
application, network equipment)

...

Figure: Architecture overview



The tool

libfluid is the tool we are presenting to solve these issues.

Built for the Open Networking Foundation competition [3] and
chosen as the winner entry (9 were submitted, worldwide), being
awarded a cash prize and highlighted internationally.

This library is divided in two parts, taking the direction we
outlined in our research so far: libfluid base and libfluid msg.
Our main point of interest in this presentation is libfluid base.



Architecture

BaseOFServer OFServer

Thread 2Thread 1

O
FC

on
ne

ct
io

n

O
FC

on
ne

ct
io

n

O
FC

on
ne

ct
io

n

base_connection_callback

Client
(OF Switch)

base_message_callback

YourController

message_callback connection_callback

BaseOFConnection BaseOFConnectionBaseOFConnection

Client
(OF Switch)

Client
(OF Switch)

libfluid_msg

libfluid_base

Inherits

Connects

Library use

Application use

Calls

Your
logic

Figure: libfluid architecture



Architecture: key points

We have already demonstrated a way of building a controller
(server) and a switch (client) using the same code base, reusing
the abstractions we built.

We decided to leave the responsibility for dealing with each
version of the protocol to libfluid msg. libfluid base is
completely agnostic to OpenFlow versions and message parsing.

A library is used for providing an event loop that runs in each
thread, dealing with socket management and IO (libevent [4]).



Architecture: key points (cont.)

A user specifies how many threads it wants to use when
initializing the driver, and these threads will be responsible for
listening to connection events.

The user must implement two methods for handling major types
of events: message and connection events.

The user needs to implement the two callback methods and call
a start method to have a bare-bones OpenFlow controller
running.



Architecture: key points (cont.)

The way of deploying threading is a core issue to our research,
which impacts on design decisions. We will be looking into how
we can take advantage of multithreading to prioritize events.

C++ was chosen as the main language due to higher level
abstractions allowed by OOP, but we are not making use of
higher-level features that might pose portability problems (such
as templates and exceptions).

This current implementation is ready for use for any use you can
think of: prototyping, embedding in hardware, building
applications, or just having fun with OpenFlow!



Demonstration

We will be showing:

A quick presentation on our documentation and other resources
available for developers.

A quick overview of the installation process.

A sample dummy controller application will be shown in detail,
and we will also take a glance on a learning switch application
implemented using libfluid.

The code and resources are available at:
http://opennetworkingfoundation.github.io/libfluid/

http://opennetworkingfoundation.github.io/libfluid/


Conclusion

By recognizing the distinct nature of the different parts in an
SDN control protocol, we have identified a few issues in current
solutions and possible improvements to them.

Our solution, though in early stages, shows promising results,
being chosen as the winner in an important competition in its
area.

We want to improve it by applying a research-oriented approach
to solving issues such as: an improved event model, formalization
of the client-server architecture and higher-level abstractions.



References I

[1] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to
SDN. Queue, 11(12):20, 2013.

[2] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[3] Open Networking Foundation. Open Networking Foundation.
https://www.opennetworking.org/, 2014. [Access:
15-Feb-2014].

[4] Nick Mathewson and Niels Provos. libevent.
http://libevent.org/, 2011. [Access: 15-Feb-2014].

https://www.opennetworking.org/
http://libevent.org/

	Introduction
	Identified issues
	The libfluid architecture
	Implementation details
	Demonstration
	Conclusion

