

Revisiting Routing Control Platforms with the Eyes and Muscles of Software-Defined Networking

Christian E. Rothenberg, Marcelo R. Nascimento, Marcos R. Salvador Telecomm. Research and Development Center (CPqD) Campinas - SP - Brazil esteve@cpqd.com.br Carlos N. A. Corrêa, Sidney C. de Lucena Federal University of the Rio de Janeiro State (UniRio) Rio de Janeiro - RJ - Brazil carlos.correa@uniriotec.br Robert Raszuk NTT MCL San Mateo - California - USA rr@nttmcl.com

ACM SIGCOMM HotSDN' 12 Workshop Helsinki, Finland, 13 August 2012

- Research in scope and contribution
- RouteFlow Control Platform
 - Multi-controller architecture
 - Proof of concept implementation: Single node abstract eBGP router
 - Use Cases

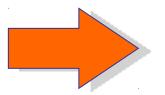
- · Challenges
- Conclusions and Future Work

Research in scope and contribution

- Early work on Routing Control Platforms (RCP) [Ramjee 2006, Feamster 2004, Van der Merwe 2006, Wang 2009]
 - In operation at AT&T, considered a differentiator for "dynamic connectivity management".
- Research Question:

٠

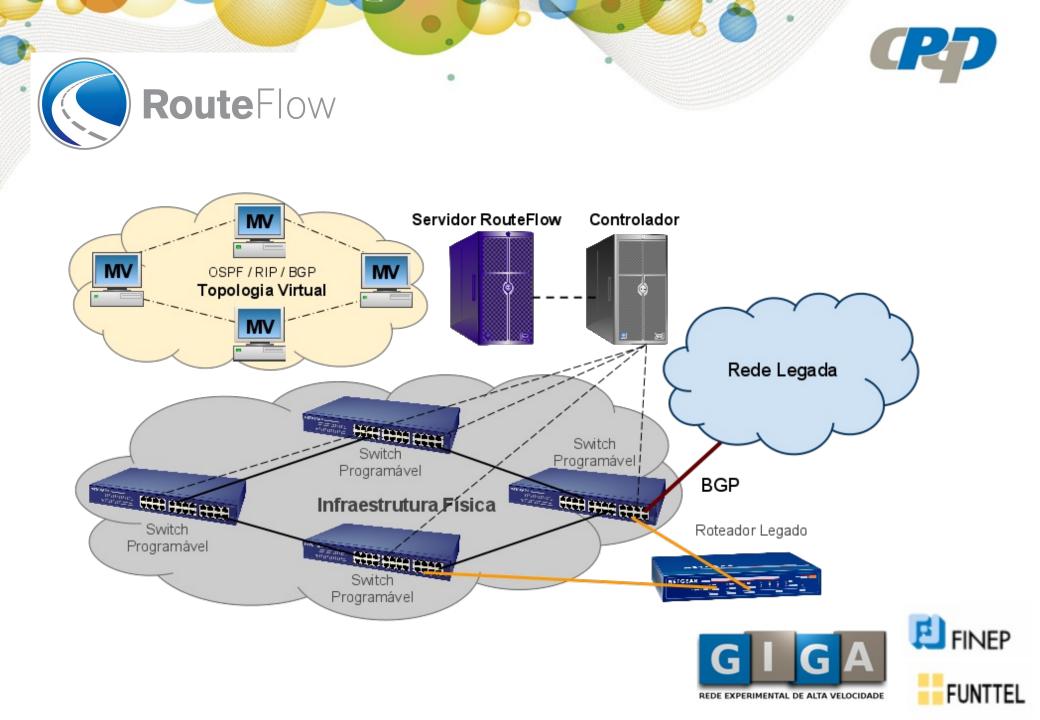
•


- Re-examine the concept of RCP with the visibility

 (i.e., network-wide, multi-layer, flow and topology maps, full RIB: and direct control capabilities
 (i.e., actual FIB installation, rich matching and instruction set)
 of the SDN abstraction set and the specifics of the OpenFlow choice
- RouteFlow glues virtualized IP routing stacks with OpenFlow
- RouteFlow acts as a new indirection layer for
 - routing protocol messages (e.g. BGP session terminates in servers)
 - RIB-(to-FIB)-to-OpenFlow transformations

Software Defined IP Routing

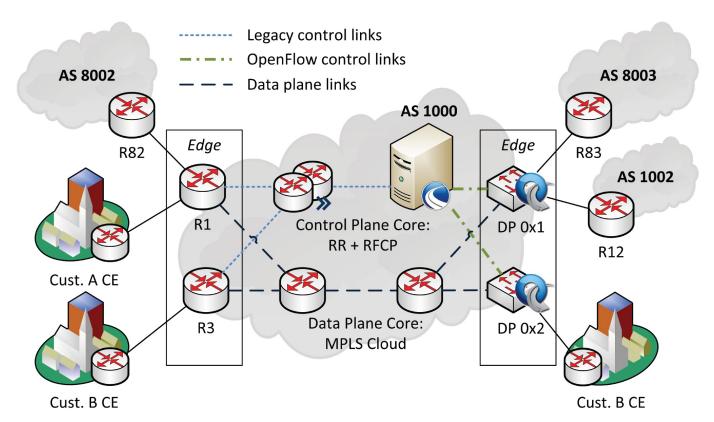
High cost Specialized config. Closed source Slow innovation

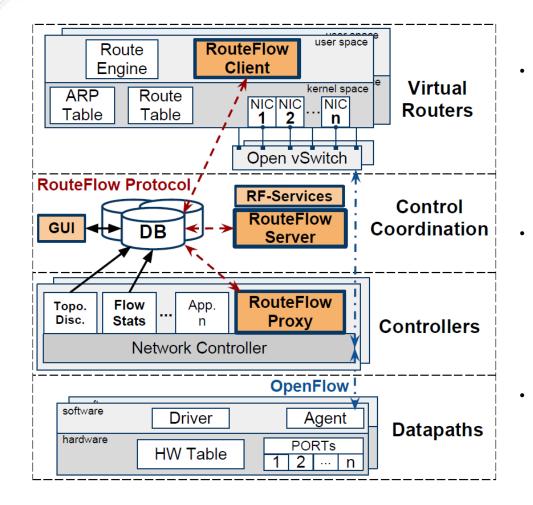


Source: McKeown

OSPF BGP ISIS LDP **Route**Flow Open interface Controller Controller Controller Open interface . **OpenFlow Switches** Low cost (commodity) Multi-vendor modularity

Open source


Rapid innovation



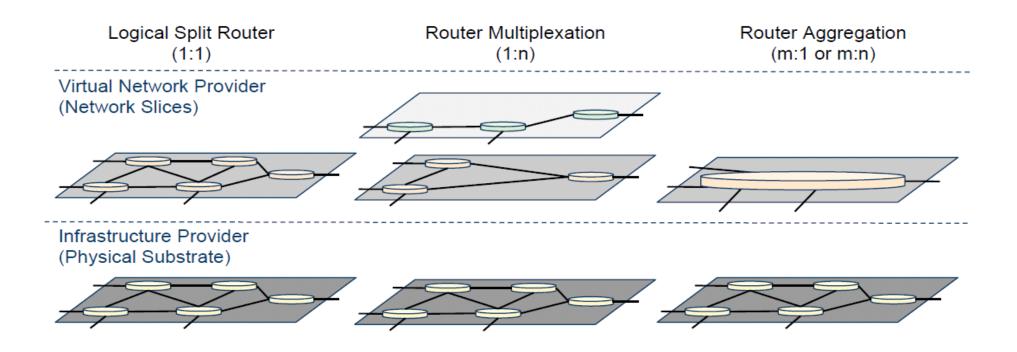
Controller-Centric Hybrid Networking

- A migration path to roll out OpenFlow technology
- Not a revolution, but an evolution of current iBGP RRs to essentially eBGP Route Controllers
 - "BGP-free edge": A cost-effective simplified edge for SW-driven innovations

Key Features

Modular architecture

- RF-Proxy
- RF-Server
- RF-Client

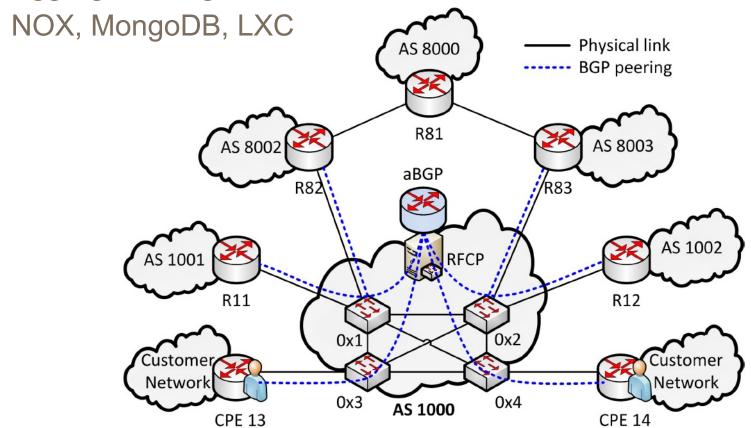

Database layer

- JSON-based IPC
- Resillient core state
- Programmer-friendly
- Multi-Controller support
 - NOX, POX, (Ryu)
 - Floodlight, Trema (planned)

Modes of operation

٠

- From logical routers (akin VRFs) to single node abstractions over flexible virtual networks.
- New design choices on the distribution of the control nodes.



Aggregated BGP routing service

٠

- Single node abstraction of a domain-wide eBGP router
 - Think modern multi-chasis routing architectures with external route processors and OpenFlow switches acting as line cards
- Aggregation logic defined in the RF-Server

Routing-centric use cases under research

- Engineered path selection
 - Think Google WAN, performance-based routing, etc.
- · Optimal best path reflection
 - Per ingress/customer [draft-ietf-idr-bgp-optimal-route-reflection-01]
- Path protection with prefix independent convergence
 - Hierarchical FIBs w/ OF 1.X Tables + LFA route-precomputation
 - Security

•

•

•

- Data plane blackholes and middlebox injections,
- Secure Inter-domain routing ideas (crypto intense S*-BGP, etc..)
- Simplifying customer multi-homing
 - Easy to set and control cost/performance/policy-based routing
- IPv6 migration
 - Flow matching for service termination in v4-v6 migration solutions

Challenges

٠

•

•

- Centralized BGP
 - Shown to scale well in modern CPU architectures
 - Centralized does not mean not disitrbuted (but removal from edge)
- Small OpenFlow table sizes
 - Transient limitation?
 - Expose existing FIB data structures as an IP lookup OF table?
 - Smart RIB&FIB reduction (e.g., simple [draft-ietf-grow-simple-va-04]
 - HW/SW flow offloading
- Limited OpenFlow processing in datapath
 - Transient / Un-optimized implementations
- High availability
 - Previous ideas from disitributed RCPs
 - Database-centric designs
 - Development in-progress of "BGP SHIM" for transparent eBGP redundancy

Conclusions

- RouteFlow is
 - a simple yet powerful (adaptable, inexpensive) routing architecture
 - a platform for real IP routing protocol experimentation
 - a tool for OpenFlow adoption via controller-centric hybrid networking
- Many open research questions and future work
 - OF 1.X, MPLS, OAM, GUI, policy languages, configuration mgm, etc.
- Opportunity for a community-driven development of competitive, deployable, open routing control solutions

Christian Esteve Rothenberg, PhD Diretoria de Redes Convergentes (DRC) esteve@cpqd.com.br

Thank you!

Questions?

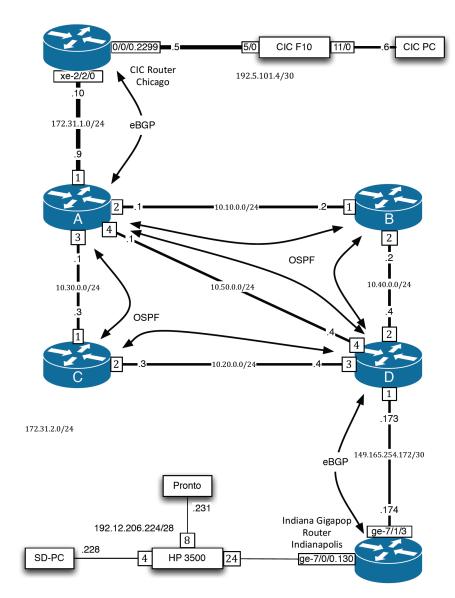
www.cpqd.com

Access:

٠

•

- http://go.cpqd.com.br/7API-demo


Indiana University GUI demo:

- http://goo.gl/T3Tqe

SinCNTRE Deployment

- 4 Virtual routers
- 10 Gig and 1 Gig connections
- 2 BGP connections to external networks
- Remote Controller
- New User Interface

Compare interfaces over the last 30 years

"PC" user interfaces

	u date	7148127							
Enter se			.1.3						
Differ ise	a cire:								
The 184	Person	al Comparter	r 100S						
		C)Copperight		orp 1981.	1982				
RM1r/w									
COMPANY	0.18	PUBLIC	C119	CHICLESS	0.18	5775	0.119	DISKURF	018
DISKUMP	0.0111	COMP	008	EXECUTE	DOD	NULE	008	EDUTH	0.15
	0.011	LINK	DOD	DRSTC	0.011	DRSTCR	0.011	ANT .	865
DESILIG		And the Woman of the	1993	CHLORDAN	865	CALENDAR	1945	PUSIC	BAS
SHITTLES	865	NULTERGE							
	345 345	CINCLE	865	PERCHART	395	SPACE	865	DHLL	865
SHITLES				PERCHART	865	SPACE	BAS	DALL	BAS
SAMPLISS DOMIESZ COMM	865	CINCLE		PERCHART	845	SPACE	BAS	DHLL	BAS
SAMPLISS DOMIESZ COMM	BAS BAS 5 File	CINCLE (s)		PERCHART	BHS	SINCE	BAS	DALL	BAS
3017LE3 001/27 001/127 001/11 2	BAS BAS 5 File	CENCLE (s) con			845	SPACE	845	DHLL	865
SANTLES DUNIESY COMM Z Abdir ce COMMAND	845 845 5 File mont.	CINCLE (s) 500 9353	BHS		BAS	SPACE	845	DHLL	BAS

Source: Chris Small (Indiana)

Network user interfaces

Router>en Router#Service-module g1/0 session Trying 172.25.25.25, 2066 Open	
Swittheen Switchwoonf t Enter comfiguration commands, one per line. End with CNTL/ Switch(comfig)#int fastEthernet 1/0/1 Switch(comfig=ff)#ip address 10.10.10.2 255.255.255.0 Switch(comfig=ff)#ip and Switch(comfig=ff)#end shut Switch(comfig=ff)#end	
Switches Suilding configuration (DX) 01:09:15: KSVS-S-CONFIG_I: Configured from console by conso Switche	le

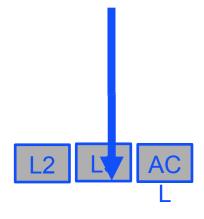
Demystifying Configuation Challenges and Tradoffs in Network Based ISP Services (Benson, Akella, Shaikh SIGCOMM 2011)

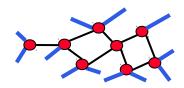
RP

RouteFlow User Interface

- How to make network administration:
 - Simpler to implement
 - More robust and consistent
 - Easier to manage
- Automation and Abstraction
 - Can you build very different interfaces with SDN backends?
- E.g., type: http://netkarma.testlab.grnoc.iu.edu/rf/ or... http://goo.gl/T3Tqe

Source: Chris Small (Indiana)


RouteFlow Platform research topics


High availability

٠

•

- Integration of OF v1.1, v1.2 and v1.3
 - LDP / MPLS support towards open-source LSR
 - Realizing the northbound SDN abstractions
 - Specification / Configuration
 - Network Information Base
 - Knowledge Information Base
 - Troubleshooting, testing, debugging, ...

Collaborations and community developments

- Web-based UI & Internet 2 HW pilot [C. Small, Indiana]
- Aggregated BGP Routing Service [C. Corrêa, Unirio]
- SNMP plugin [J. Stringer, Google]

- Optimal BGP best path reflection [R. Raszuk, NTT-MCL]
- OpenFlow v1.1 and v1.2 [w/ Ericsson]
- Open Label Switched Router [OSRF; Google]
 - Multi-path, Fast-ReRoute, BGP-Sec, IPv6, ... [YOU?]

... building a community

Visits: 12,000+ (5,000+ Unique) From over 1,100 cities of 90+ countries all over the globe!

http://go.cpqd.com.br/routeflow/

days since Project Launch

368

FUNTTEL

Conclusions

٠

- RouteFlow is
 - a simple yet powerful (adaptable, inexpensive) router design
 - a platform for real routing protocol experimentation
 - a tool for OpenFlow adoption via controller-centric hybrid networking

InCNTRE

Evolving the IP routing landscape with OpenFlow/SDN

HE M

NTTCommunications

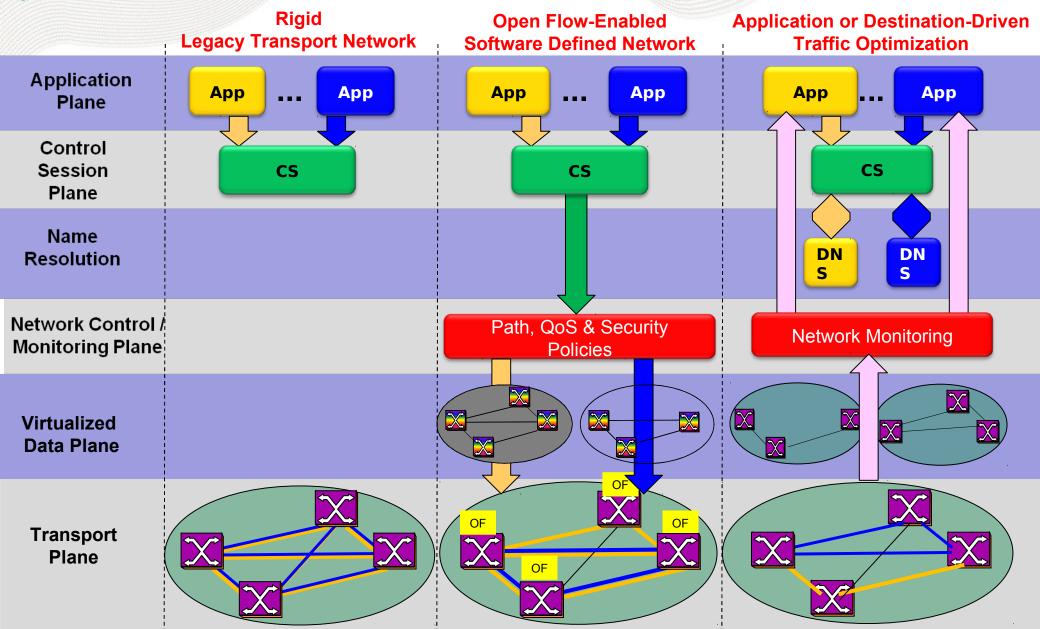
Open Source Routing

Google

Many open research questions

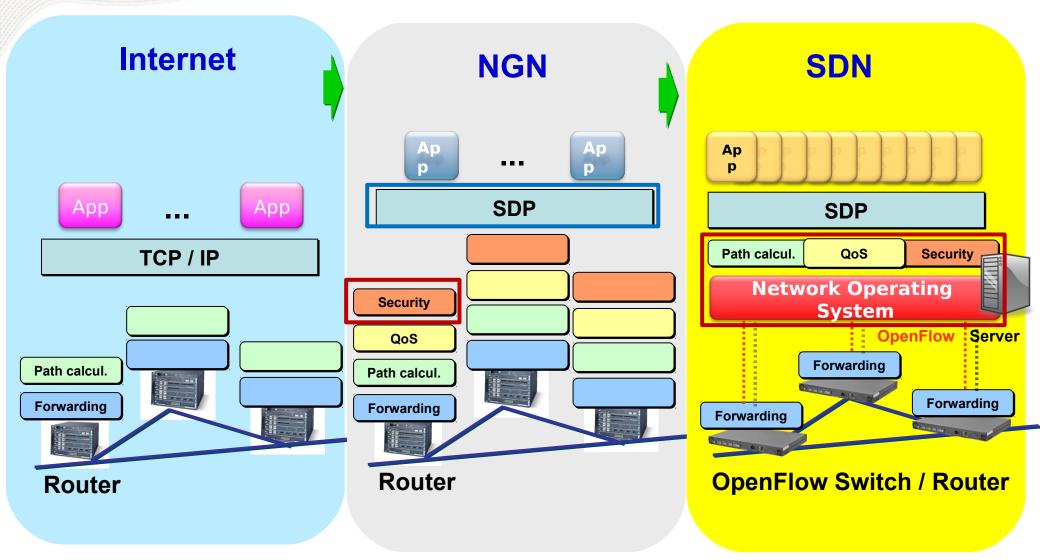
RouteFlow

- Experimental research facilities are critical for validation
- Opportunity for a community-driven development of competitive, deployable, open routing control solutions


Beneficios e impactos

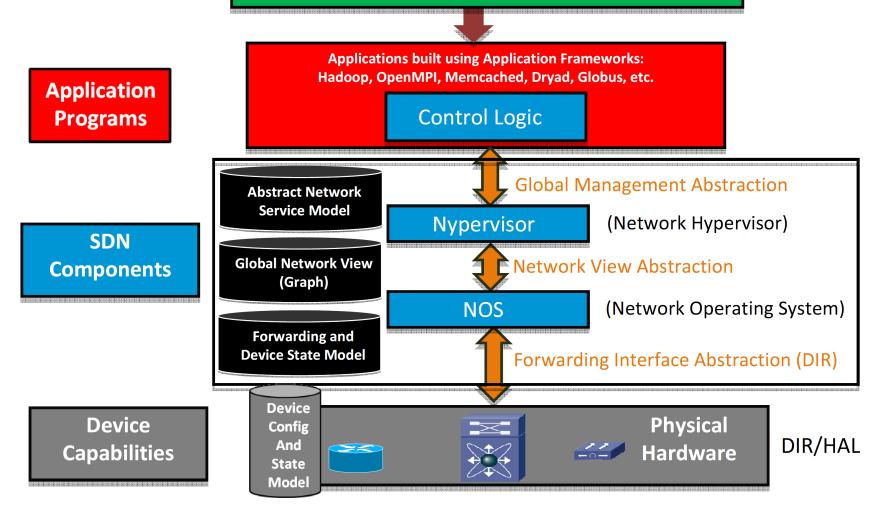
٠

- Inovação tecnológica em soluções de redes e serviços para os proprietários de infra-estrutura, os provedores de serviços e a comunidade de pesquisa.
- Oportunidade para que empresas nacionais possam competir e inovar na área de aplicações para gerenciamento e controle de redes de pacotes.
- Novos modelos de negócio que promovem redução de CAPEX e OPEX por meio de novos serviços (ex. alocação dinâmica de fatias/recursos da rede), reaproveitamento de ativos e automatização dos processos operacionais.
- Diminuição do tempo ao mercado na implementação de funcionalidades e soluções de redes integradas e customizadas à demanda do cliente.
- Simplificação e barateamento dos equipamentos pela diminuição dos requisitos mínimos de SW embarcado e pilhas de protocolos proprietárias.
- Consolidação dos planos de controle e gerência de infra-estruturas de rede, facilitando a convergência ampla e a migração para novos padrões e tecnologias de rede de transporte.


SDN Converged Network Services

RP

Rede Convergente Definida por Software (RCDS)



Source: NEC, adapted

"Modern" OF/SDN architecture

Business Requirements and Use Cases: Search, Social Networks, Cloud Computing, Web, Finance, etc.

Control Plane Distribution Options

	Vertically integrated (classic Router/ Switch Model)	Decoupled (original OpenFlow model	Hybrid (evolving model in ONF)
Logically Centralized ("servers")			
Fully distributed ("on box")			

Data Path jointly controlled by standard on-box control plane and centralized off-box controller

Slide courtesy Frank Brockners

Legend: Data plane

Control plane function