
Towards Semantic Network Models 
via Graph Databases for SDN Applications

1-Oct 2015, Bilbao, Spain



Agenda

• Introduction

• Goals

• Related Work

• Proposal

• Experimental Evaluation and Results

• Conclusions and Future Work

2



Agenda

• Introduction

• Goals

• Related Work

• Proposal

• Experimental Evaluation and Results

• Conclusions and Future Work

3



 Rise of Software Defined Networking (SDN);

 Information models and data structures for topology (and more)
needed in any network management / control technology;

 Lots of related standardization efforts (IETF, YANG, ONF CIM, etc.)

 Evolution and Maturity of the Semantic Web (e.g., ontologies, RDF)

 … and success stories in niche application domains;

 Networking? NML

 Popularity of NoSQL DB, e.g., graph databases such as Neo4j;

 Scalabilty properties & Natural approach to graph/network problems

Introduction & Motivation

4



Software Defined Networking (SDN):

Clean / Programmatic Separation of control and data planes;

New abstractions in controlling and network forwarding;

API for packet flow abstraction

OpenFlow Protocol;

Network Topology Abstraction;

?

Software Defined Networking

5
KREUTZ, D. et al., 2015



Principles of the Semantic Web:

Allows reuse of information;

Data integration among organizations;

Enhanced (rich) Web search;

Guaranteed accessibility

Ontology;

 “specification of a conceptualization”

Web Ontology Language (OWL);

Resource Description Framework (RDF):

<subject, predicate, object>;

Semantic Models

6



 Relational Database Model

 Consolidated; Well Documented;

 ACID Transactions (Atomicity, Consistency, Isolation and Durability)

 Limitations:
 Queries of highly interconnected data;

 Data Modelling is Adapted

 NOSQL (http://nosql-database.org/)

 Schema Free; 

 Scalability; 

 Disponibility;

 Response time ; 

 Horizontal Scalling; 

Databases

7



Graph:
Nodes;

Edges;

Topology;

Interconnected Data; 
(Relationship-centered);

Natural modeling of problems, e.g:

Semantic Web;

Computer Networks;

Recommendation Engines, etc;

Graph Databases (GDB)

8



Agenda

• Introduction

• Goals

• Related Work

• Proposal

• Experimental Evaluation and Results

• Conclusions and Future Work

9



• Apply a semantic model to describe network topologies
(and complete network+compute infrastructures)
in the context of SDN controllers leveraging graph databases;

• Map SDN primitives (in the literature) as graph database queries;

• Identify limitations of the chosen semantic language in support of
SDN application primitives;

• PoC system profiling: Evaluate the performance of a prototype;

Goals

10



Agenda

• Introduction

• Goals

• Related Work

• Proposal

• Experimental Evaluation and Results

• Conclusions and Future Work

11



• ONIX Controller (Koponen et al., 2010):
• Pioneer distributed control plane implementation of SDN;

• Graph model to define the partitioning and state
distribution/maintenance among different controllers;

• Graphs in SDN (Pantuza et al., 2014):
• Support of dynamic network representation;

• Mininum Spanning tree of network graph in a real time;

• NetGraph Library (Raghavendra et al., 2012):
• Periodic updates of network state;

• Queries results to SDN controller;

Do not use semantic notations
(n)or store network graphs in a persistent way.

SDN Controllers

12



Network Markup Language – NML (van der Ham et al., 2013)

• Single network description standard under guidance of the Open Grid Forum (OGF)

“complex multi-layer path finding, with a technology independent algorithm”

• Supports description of multi-layer and multi-domain networks:

• Virtualized networks;

• Heterogeneous network technologies;

• Model extensibility as neccessary, e.g., 

• NOVI – Future Internet Platform:
• http://www.fp7-novi.eu/

• GEYSERS – Virtualizing Optical Networks:
• http://www.i2cat.net/en/projects/geysers

• CINEGRID – Distribution of Digital Media:
• http://www.cinegrid.org

Semantic Model for Networking

13



Semantic Models
Main NML Classes and Properties

GHIJSEN, M. et al., 2013

14



• Benchmark of GDBs (Jouili e Vansteenberghe, 2013):

• Neo4j, OrientDB, Titan, DEX;

• Neo4j obtained the best query time results;

• Auditing Cloud Architectures (Soundararajan and Kakaraddi, 2014):

• Neo4j e Cypher:

• Risk Analysis;

• Simple Reporting;

• Inventory Comparison;

Graph Databases

15



• Native Storage and Processing of Graph;

• Open Source (Community Version);

• Property Model:

• Nodes and relationships have properties;

• Query Language:

• Cypher;

• Gremlin (TinkerPop);

Graph Databases
Neo4j

16



Agenda

• Introduction

• Goals

• Related Work

• Proposal

• Experimental Evaluation and Results

• Conclusions and Future Work

17



Strawman Architecture

18



Primitive Semantic Model GBD Read/Write

setEdgeWeight No Yes W

getEdgeWeight No Yes R

countInDegree Yes Yes R

countOutDegree Yes Yes R

countNeighbors Yes Yes R

computeMST Yes Yes R

computeAPSP Yes Yes R

computeSSSP Yes Yes R

doesRouteExist Yes Yes R

computeKSSSP Yes Yes R

delete Yes Yes W

insert Yes Yes W

19

Primitives Analysis
Compatibility of Primitives [NetGraph]



Agenda

• Introduction

• Goals

• Related Work

• Proposal

• Experimental Evaluation and Results

• Conclusions and Future Work

20



21

Data Modeling

 Example of Relationship Modeling between Nodes “9” and “0”



Topology Nodes (BRITE) Resultant Graph

Tiny 10 76 nodes
(160 relationships)

Small 100 640 nodes 
(1.760 relationships)

Medium 1.000 4.978 nodes 
(11.912 relationships)

Large 10.000 109.932 nodes 
(359.728 relationships)

22

Topologies

• Topology Generator: BRITE (Boston University);



• Fixed Internet-like topologies (BRITE) of diferent sizes; 

• Random atributes;

• Each primitive executed 1.000 times in each topology:

• Cypher Language:

• E.g.:

Queries

MATCH (n:Node)-[:hasOutboundPort]->(p:Port)-[isSource]->(l:Link) 
WHERE n.name=“A”
RETURN COUNT(l) AS CountOutDegree

23



24

Results Analysis
Large Topology (ms)

Primitive Average Standard Deviation 99 Percentile

setEdgeWeight 162,33 9,46 205,01

getEdgeWeight 1,70 0,74 4,00

countInDegree 854,53 146,77 1.399,05

countOutDegree 425,17 68,36 699,02

countNeighbors 4,45 2,27 10,01

doesRouteExist 37,51 29,09 73,06

computeMST 1,44 1,25 3.02

computeSSSP 5,47 4,98 29,00

computeKSSSP 26,21 37,23 81,04

computeAPSP 1,04 0,68 3,01

delete 1053,89 162,55 1637,02

insert 3,57 3,21 16,01



Results Analysis

25

95 Percentile

5 Percentile 



Results Analysis

26



Results Analysis

27



• Count In Degree and Count Out Degree:

• Number of hops (different relationships types):

NodeA ← hasInboundPort ← Port ← isSink ← Link

• Delete:

• Number of hops;

• Depends on connectivity of deleted node

• Set Edge Weight:

• Read-Write Operation;

Results Analysis
Primitives with large response time

28



• All Pairs of Shortest Path (compute APSP) is faster than K-

Shortest Path (computeKSSSP) and Shortest Path 

(computeSSSP);

• The GDB optimizes All Pairs of Shortest Path Computing, 

because during the traversal it computes the shortest path 

among the intermediates nodes;

Results Analysis
Shortest Path Primitives

29



30

Relational Model
Enhanced Entity Relationship Model (EER)



Primitive Average Standart Deviation Percentile 99

countInDegree 1,39 4,57 22,02

computeSSSP 18,13 3,82 26,00

computeAPSP 2,11 1,39 7,00

Delete 162,86 79,93 405,00

Insert 137,36 43,80 300,00

31

Relational Model
Results (MySQL) –Large Topology



Relational Model

• Adapted modelling to tables;

• For computing shortest paths 
it was necessary to
implement/adapt an 
algorithm

• Lower response time:

• CountInDegree

• Delete

Graph Model

• Natural modelling;

• Native functions to compute 
shortest paths;

• Lower response time:

• ComputeSSSP

• Insert

32

Comparison



Agenda

• Introduction

• Goals

• Related Work

• Proposal

• Experimental Evaluation and Results

• Conclusions and Future Work

33



Feasibility of indexing a network topology following a semantic
model (NML) in a graph database (Neo4j) in the context of SDN 
primitives;

• Integration Architecture (NML-to-Neo4j parser) proposed;

• Basic SDN control application primitives reproduced;

• Some limitations of the semantic model were identified;

• Neo4j graph DB technology choice compatible (property graphs) 
with the network modeling problem

• Promising performance and scalability 

• Cypher language exhibited good flexibility;

Conclusions

34



• Evaluate the performance with dynamic workloads and 
applications on OpenDaylight controller using REST APIs;

• Develop extensions of the Semantic Model (NML) 
to meet SDN (and NFV) appications needs;

• Use cases under investigation include SDN eXchanges, east/west 
interfaces, controller platform for multiple applications

• Develop new graph-oriented primitives;

• Explore system optimizations to reduce latency and increase
scalability;

Future Work

35



Thanks! Obrigado! (More) Questions?

https://github.com/intrig-unicamp/NML-Neo4j

cypriano@dca.fee.unicamp.br

36



Backup

37



38

Results Analysis
Small Topology (ms)

Primitive Average Standard Deviation 99 Percentile

setEdgeWeight 8,78 3,23 23,02

getEdgeWeight 1,73 0,76 3,00

countInDegree 17,94 11,36 65,01

countOutDegree 8,35 3,46 23,00

countNeighbors 6,16 22,43 14,07

doesRouteExist 6,55 3,82 15,02

computeMST 1,12 0,66 2,00

computeSSSP 1,34 1,38 4,00

computeKSSSP 2,94 3,44 12,00

computeAPSP 1,04 0,84 4,01

delete 20,71 7,20 48,01

insert 3,66 3,26 15,02



Results Analysis

39


