### Mininet-WiFi: Emulating Software-Defined Wireless Networks Ramon Fontes

joint work with Samira Afzal, Samuel Brito, Mateus Santos and Christian Rothenberg (advisor)



11th International Conference on Network and Service Management (CNSM) 2nd International Workshop on Management of SDN and NFV Systems

> CNSM 2015 Barcelona-Spain

## O-Agenda

- 1. Introduction
- 2. Mininet-WiFi
- 3. Case Studies
- 4. Related Work
- 5. Limitations and Future Work
- 6. Conclusions





### O- Motivation

#### **Popularity of WiFi Networks**

It is important to emulate wireless networks for performance evaluating, testing, and protocol/system debugging.

#### **Software-Defined Wireless Networking**

It allows centralized control of wireless networks, separating the data plane and control plane, also allowing the control of the network through the OpenFlow protocol.



### O- Main Goal

### Mininet-WiFi

Aims at providing high fidelity emulation of wireless networks enabling real network analysis in fully controlled environments in support of research on Wireless and SDWN.



## O- Challenges

Wireless channel emulation

- Propagation
- Broadcast
- o Modulation
- O Mobility

#### **Realistic experiments**

 Reproducing real networks behavior

# 2 – Mininet-WiFi

- Solution for Emulating Software-Defined Wireless Networks
- Fork of Mininet (based on lightweight virtualization / Linux containers)
- mac80211\_hwsim/softmac



### - Architecture





### - Working Process





## 

```
alpha@alpha-Inspiron-5547:~$ sudo mn --wifi
*** Enabling Wireless Module
*** Creating network
*** Adding controller
*** Adding Station(s):
sta1 sta2
*** Adding Access Point(s):
ap1
*** Associating Station(s):
(sta1, ap1) (sta2, ap1)
*** Starting controller(s)
C<sub>0</sub>
*** Starting 1 Access Point(s)
ap1 ...
*** Starting CLI:
mininet-wifi>
```



## **O-Working with Mininet-WiFi**

### mininet-wifi>

| Network        |                        |                                 |  |
|----------------|------------------------|---------------------------------|--|
| Ping           | lperf                  | iw                              |  |
| sta1 ping sta2 | sta1 iperf -c 10.0.0.1 | sta1 iw dev sta1-<br>wlan0 scan |  |
| Queries        |                        |                                 |  |
| Position       | Distance               |                                 |  |
| position sta1  | distance sta1 sta2     |                                 |  |



### **— Python Codes**





### **—** Performance Evaluation

| Operation                   | Time (ms) |
|-----------------------------|-----------|
| Start an AP                 | 17        |
| Start a Station             | 63        |
| Associate two<br>nodes      | 10        |
| Start<br>mac80211_hwsi<br>m | 5         |
| Stop AP and<br>Stations     | 350       |

**Case Studies** 3

### **#1 Wireless Bicasting**

https://goo.gl/NP0QyZ



### #2 Integration with Physical Wireless Interface



https://goo.gl/UcCtZB



### ○ Case Studies

#### #3 Mobility



| mininet-wifi> | sta1 ping sta2                                      |
|---------------|-----------------------------------------------------|
| PING 10.0.3   | (10.0.0.3) 56(84) bytes of data.                    |
| 64 bytes from | 10.0.0.3: icmp_seq=1 ttl=64 time=38.0 ms            |
| 64 bytes from | 10.0.0.3: icmp_seq=2 ttl=64 time=18.1 ms            |
| 64 bytes from | 10.0.0.3: icmp_seq=3 ttl=64 time=22.9 ms            |
| 64 bytes from | 10.0.0.3: icmp_seq=4 ttl=64 time=25.8 ms            |
| 64 bytes from | 10.0.0.3: icmp_seq=5 ttl=64 time=29.0 ms            |
| From 10.0.0.2 | <pre>icmp_seq=37 Destination Host Unreachable</pre> |



# O Mobility

#### **Mobility Models**

- RandomWalk
- TruncatedLevyWalk
- RandomDirection
- RandomWaypoint
- GaussMarkov





### Case Studies

### #4 Reproducing Related Research

Using all the wireless networks around us



http://goo.gl/siZ2hH



### O- Case Studies

# Using all the wireless networks around us within Mininet-WiFi



https://goo.gl/NrIRme

# 4 – Related Work



### 5 – Limitations & Future Work



### 

- → Broadcast 1s/2016
- → Propagation 2s/2016
- → Mobility 1s/2017
- → Reproducing Real Network 2s/2017

# 6 Conclusions





**Evaluation in Controlled Environment** (HiFi Wireless Emulator)



Community-based collaborative research around Wireless Networking and SDWN



WebSite: http://www.intrig.dca.fee.unicamp.br/ Source: https://github.com/intrig-unicamp/mininet-wifi Docker: https://hub.docker.com/r/ramonfontes/mininet-wifi/ Videos: https://goo.gl/4P02YB



#### Ramon Fontes - ramonrf@dca.fee.unicamp.br

WebSite: http://www.intrig.dca.fee.unicamp.br/ Source: https://github.com/intrig-unicamp/mininet-wifi Docker: https://hub.docker.com/r/ramonfontes/mininet-wifi/ Videos: https://goo.gl/4P02YB